Принципы и методика нормирования отдельных видов работ
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Кафедра менеджмента
РЕФЕРАТ
на тему:
«ПРИНЦИПЫ И МЕТОДИКА НОРМИРОВАНИЯ ОТДЕЛЬНЫХ ВИДОВ РАБОТ»
МИНСК, 2008
СОДЕРЖАНИЕ
1. Нормирование работ на металлорежущих станках.
2. Нормирование слесарно-сборочных работ.
3. Нормирование труда при многостаночном обслуживании.
4. Нормирование труда в условиях автоматизированного производства.
5. Нормирование труда в период освоения производства новой продукции.
1. Нормирование работ на металлорежущих станках
Особенностью нормирования труда на обработочных операциях является подбор наиболее рациональных режимов работы оборудования, т.е. выбор наиболее выгодного сочетания скорости резания и подачи, обеспечивающих в данных условиях, с учетом целесообразного использования режущих свойств инструмента и кинематических возможностей оборудования наибольшую производительность и наименьшую себестоимость обработки.
Оперативное время на машинных операциях нормируется всегда раздельно: определяется время машинной работы и время вспомогательной работы.
Время машинной (основной) работы рассчитывается по соответствующим для каждого вида работ формулам машинного времени. Эти формулы выражают зависимость продолжительности машинного времени от объема работы при изготовлении единицы продукции и от режима работы оборудования. С объемом работы эта зависимость прямая, а с режимом резания – обратная.
Для оптимизации машинного времени применяют возможно большие технологически допустимые подачи и соответствующие им скорости резания. При этом следует в наибольшей степени использовать режущие свойств инструмента и его прочность, динамические возможности станка при соблюдении технических условий на изготовление детали.
Выбор материала режущей части инструмента и его геометрических форм является важным фактором, определяющим уровень режима резания. Основой для такого выбора являются характер и условия обработки, характеристики обрабатываемого материала.
Процесс резания состоит из 2 движений: из числа оборотов детали или инструмента в минуту и движения подачи. Поскольку деталь или инструмент (фрезерные или сверлильные станки) вращается с помощью шпинделя, то число оборотов детали или инструмента равно числу оборотов шпинделя. Подача характеризует величину перемещения режущего инструмента относительно обрабатываемой детали (токарные, сверлильные работы и работы на продольно-строгальном станках) или величину перемещения обрабатываемой детали относительно режущего инструмента (фрезерные работы, работы на поперечно-строгальных станках) за один оборот шпинделя.
Толщина слоя металла, снимаемого с заготовки при механической обработке, называется припуском на обработку. Припуск может сниматься за один или несколько проходов инструмента в зависимости от заданной глубины резания.
Машинное время определяется на каждый переход процесса обработки детали на станке, после чего время выполнения всех переходов суммируется и включается в основное (технологическое) время для расчета нормы штучного времени.
Основное (технологическое) время на переход при точении, растачивании, сверлении, нарезании резьбы определяется по формуле:
Тo = i = i , мин
где L – длина пути, проходимого инструментом в направлении подачи, мм;
l – длина обрабатываемой поверхности в направлении подачи, мм;
l – величина врезания и перебега инструмента, мм;
l – дополнительная длина на взятие пробной стружки, мм;
n – частота вращения шпинделя в минуту;
S – подача инструмента за один оборот шпинделя, мм/об;
i – число проходов.
Эта формула является общей для всех видов станочных работ. Однако методика расчета параметров режима резания при нормировании различных видов станочных работ имеет свои особенности. Как следует из формулы, время выполнения машинной работы зависит от оптимального сочетания глубины резания, подачи и числа оборотов шпинделя, что в комплексе называется режимами резания. В свою очередь, выбор режимов резания производится с учетом сил резания, оптимальной скорости и эффективной мощности резания, которая необходима для осуществления данного режима резания. Эту зависимость можно представить следующей формулой
,
где Сv – постоянная, зависящая от материала режущей части инструмента, материала заготовки и других условий резания (то есть глубины резания, подачи, геометрии инструмента, охлаждения и т.д.);
Т – стойкость инструмента, то есть время работы инструмента между двумя заточками;
m – показатель относительной стойкости инструмента, зависящий от характера износа инструмента и ряда других факторов;
t – глубина резания, мм;
s – подача, мм/об;
х и y – показатели степеней, зависящие от обрабатываемых металлов, материала инструмента и условий обработки.
Режимы резания для станочных работ устанавливаются в следующем порядке. Исходя из припуска на обработку, определяется максимально возможная глубина резания. Относительно небольшое влияние глубины резания на стойкость резца и скорость резания при точении, строгании и фрезеровании позволяет при черновой обработке устанавливать возможно большую глубину резания, соответствующую припуску на обработку. Глубина резания может быть увеличена и при снижении подачи.
После установления глубины резания выбирается подача. При этом учитываются требуемая точность обработки поверхности, прочность державки и материала режущей части инструмента, а также жесткость системы станок-приспособление – инструмент - деталь (СПИД). При черновой обработке детали, подача зависит от обрабатываемого материала, сечения державки резца, материала режущей части инструмента и глубины резания. При чистовой обработке, подача определяется классом точности обрабатываемой поверхности.
Затем определяется максимально допустимая сила подачи при резании по прочности и жесткости крепления детали с учетом требований, предъявляемых к классу точности обработки, прочности инструмента, жесткости системы СПИД. При резании сила, действующая на инструмент, складывается из 3 составляющих: вертикального (тангенциального) усилия резания, осевого и радиального. Наибольшей является вертикальное, которое определяется по формуле
Рz = Cp t sкгс,
где Ср - коэффициент, зависящий от механических свойств, обрабатываемого материала и вида обработки;
Радиальную и осевую составляющие силы подачи определяют по аналогичным формулам.
Данные, необходимые для расчета силы подачи, допускаемой станком, приводятся в паспорте станка. Выбранная сила подачи сравнивается с этим значением и должна удовлетворять условию:
Рx Р сm,
где Рx – осевая составляющая силы резания (сила подачи) в кг;
Рсm – осевая сила, допускаемая механизмом подачи станка, в кг.
Если выбранная подача не удовлетворяет этим требованиям, необходимо установленную по нормативам подачу, снизить до величины, допускаемой прочностью механизма станка или прочностью державки и пластинки твердого сплава.
Выбор скорости резания проводится по соответствующим таблицам в зависимости от состояния обрабатываемой поверхности, геометрической формы инструмента, глубины резания и величины подачи. Влияние этих факторов при определении скорости резания учитывается с помощью поправочных коэффициентов, приведенных в нормативных таблицах.
Исходя из выбранной скорости резания, вычисляется требуемое для получения заданной скорости число оборотов шпинделя станка по формуле
n = ,
где v – скорость резания, м/мин;
D – максимальный диаметр обработки, мм
Расчетная частота вращения шпинделя сравнивается с паспортными данными станка и корректируется по ближайшему значению, указанному в паспорте.
Определяется необходимая мощность станка, которая не должна превышать эффективной мощности станка, указанной в его паспорте. Она определяется по соответствующим таблицам нормативов или по формуле
N рез = Pz v / 6120.
Если окажется, что эффективная мощность станка меньше необходимой мощности резания, то частота вращения шпинделя должна быть скорректирована по соотношению:
n = ,
где n – частота вращения, допустимая по мощности станка;
Nпр – мощность привода станка;
– коэффициент полезного действия станка.
После этих расчетов определяется основное машинное время.
Расчет других категорий затрат рабочего времени, входящих в норму штучного времени производится по соответствующим нормативам или с помощью данных хронометража и фотографии рабочего времени.
2. Нормирование слесарно-сборочных работ
Слесарные работы представляют собой холодную обработку металлов резанием, выполняемую ручным (напильник, ножовка, разметка, рубка металла и др.), или механизированным (ручной пресс, электродрель и др.) способом. Эти работы выполняются при сборке машин и механизмов, либо вместо обработки на станках, из-за неточности механической обработки. Чем меньше таких работ, тем совершеннее применяемая технология. Наибольший удельный вес слесарных работ, выполняемых при сборке, имеет место в индивидуальном и мелкосерийном производствах.
Процесс сборки представляет собой совокупность технологических операций по соединению деталей (узлов) в определенной конструктивной последовательности для получения изделия требуемого качества. Обычно, для целей нормирования, он задается развернутой схемой сборки, техническими требованиями, обеспечивающими необходимое качество изделия, и условиями выполнения работ. С точки зрения технологии, сборочный процесс может быть неоднородным и включать регулировочные, пригоночные, слесарные и др. работы. Такие операции называются слесарно-сборочными.
В отличие от нормирования механических и других видов работ, нормирование слесарно-сборочных операций имеет следующие особенности.
В качестве границы расчленения технологического процесса сборки используется сборочная единица, то есть комплект (соединение деталей), который хранится, перемещается и подается на дальнейшую сборку (с одного рабочего места на другое) как единое целое. Сборочной единицей могут быть сборочная пара (первичное звено сборочного соединения), сборочный комплекс (часть узла), узел, группа, агрегат, изделие. При нормировании сборочной операции, мы имеем дело не с одной деталью, а с комплектом.