приближение)
мм ,
где:
1) расчетный момент на колесе
кГ/мм = Н/мм.
) приведенный модуль упругости
кГ/мм2 = Н/мм2;
3) величина, учитывающая влияние на контактные напряжения наклона
червячных зубьев под углом (§7, п. 5),
Подставляя численные значения, получаем
мм.
Ввиду большой близости коэффициента Kυ к единице второго приближения можно не выполнять, поскольку уточненное значение будет пренебрежимо отличаться от ( мм).
§ 10. Подбор осевого модуля червяка и зубьев червячного колеса
По геометрической формуле находим
мм.
По ГОСТу 2144-66 принимаем = 15 мм (в большую сторону).
§ 11. Определение основных размеров червячной пары
1. Точное значение межосевого расстояния (до 0,01 мм)
мм.
2. Точные значения делительных диаметров червяка и колеса:
мм;
мм.
3. Рабочая дуговая ширина червячного венца
мм.
4. Угол зацепления в осевой плоскости червяка
=200; ; .
5. Длина резьбовой части червяка [I].
При
мм,
где последнее слагаемое — технологическая прибавка для шлифуемых
червяков.
Численно:
мм.
§ 12. Проверка выбора степени точности зацепления и уточнение скоростного коэффициента
1. Фактическая окружная скорость червячного колеса
м/сек.
2. Предельно допустимое значение окружной скорости для бронзовых
червячных колес с цилиндрическим червяком при 8-й степени точности,
кГ/мм2 и при
=2 соответственно значению [I].
Интерполируя по линейному закону для = (рис. 13),
получаем
м/сек.
С поправкой на кГ/мм2 = 490 Н/мм2 , находим
|
Рисунок – 3.
3. Правильность выбора степени точности проверяем по условию
(1,5)
При среднем значении (1,75) коэффициента запаса на нераскрытие контактов зубьев получаем , т.е м/сек.
Оставляем 8-ю степень точности, поскольку более грубые степени точности в механизмах летательных аппаратов не применяются
4. Скоростной коэффициент
§ 13. Уточнение к. п. д. червячной пары
1. Приведенный коэффициент трения червячных зубьев в паре бронза — сталь при правильно подобранной смазке
,
где 0,15 — при шлифованной резьбе червяка и — скорость скольжения
вдоль по винтовой линии:
м/сек;
.
Приведённый угол трения , т.е. .
2. К. п. д. червячной пары
При шлифованной резьбе находим
§ 14.Уточнение крутящего момента на червячном колесе в связи с уточнением к. п. д.
кГмм = Нмм.
§ 15. Проверка полученных размеров червячной пары на контактную прочность зубьев
кГ/мм2,
где кГмм= Н/мм.
Подставляя принятые и найденные входящие сюда величины, получаем:
1. На номинальном режиме
кГ/мм2= Н/мм2.
2. На перегрузочном режиме пробуксовки муфты с коэффициентом перегрузки .
кГ/мм2 = Н/мм2,
что превышает
кГ/мм2= Н/мм2.
Это легко можно исправить, перейдя на более прочную бронзу с включением никеля БрАЖН-4-4 (литье в кокиль, кГ/мм2) и пойдя на уширение червячного венца.
Тогда новое значение
кГ/мм2 = Н/мм2;
новое значение угловой ширины
т.е.
.
3. На номинальном режиме
кГ/мм2<
=33 кГ/мм2= Н/мм2,
на перегрузочном режиме
кГ/мм2 = Н/мм2= .
В результате принимаем новое значение угловой ширины червячного венца и дуговой ширины
мм.
§ 16. Определение расчетных изгибных напряжений в зубьях червячного колеса (на номинальном режиме)
1. Эквивалентное число зубьев для червячного колеса
.
2. Коэффициент формы профиля зуба
.
3. Расчетное напряжение изгиба
,
где
мм;
мм;
- коэффициент профильного перекрытия червячных зубьев 8-й
степени точности при расчете на изгиб [I].
Численно
кГ/мм2=Н/мм2.
§ 17. Допускаемые напряжения зубьев червячного колеса на изгиб
1. Механические характеристики бронзы БрАЖН-10-4-4 (литье в кокиль):
кГ/мм2 ; кГ/мм2; кГ/мм2 .
2. Теоретический коэффициент концентрации напряжений у корня зуба
.
3. Коэффициент чувствительности литой бронзы к концентрации
напряжений
q = 0,4.
4. Эффективный коэффициент концентрации напряжений у корня зуба
.
5. Коэффициент влияния чистоты поверхности у корня зуба
,
где a=6 после чистового нарезания червячных зубьев.
Численно
.
6. Коэффициент качества литой заготовки (литье в кокиль) [I]
.
7. Масштабные коэффициенты зуба [I].
Соответственно мм принимают .
При мм
8.Результирующие коэффициенты влияния отличий детали от экспериментального образца материала:
9. Предел ограниченной выносливости материала зубьев
,
где ; - по §4, п. 2;
При ,
кГ/мм2,> =
= кГ/мм2 =Н /мм2
Следовательно, = 39,6 кГ/мм2.
При реверсе и, следовательно, опять
= 39,6 кГ/мм2 = 388 Н/мм2.
10. Коэффициент чувствительности материала зубьев к асимметрии цикла напряжения [I]
11. Допускаемые напряжения на изгиб зубьев при асимметричных циклах и ограниченной долговечности
,
где [n]= 1,7÷2— допускаемый коэффициент запаса прочности зубьев на
изгиб.
Принимая для незакаленных зубьев [n] = 1,7 (отсутствуют закалочные напряжения), находим:
Следовательно
кГ/мм2 = 117 Н/мм2;
при r=-0,5 (реверс момента)
кГ/мм2<21.
Из сопоставления следует, что изгибная прочность зубьев лимируется величиной
§ 18. Проверка зубьев червячного колеса на изгибную прочность
1. На номинальном режиме
, т.е. 2,2 кГ/мм2<10.
§ 19. Окончательные основные размеры червячной пары
редуктора
A = 187,50 мм ; ; мм;
мм; ; ;
мм; ; .
Конструктивная ширина червячного венца b≈1,08; b=88; q=8.
Глава III. Расчет конической зубчатой пары
Исходные данные
1. Мощность на ведущем валу W1=2,2 квт.
2. Число оборотов ведущего вала n1=5000 об/мин.
3. Межосевой угол δ=90°.
4. Передаточное число пары i1=1,72.
5. К.п.д. зубчатой пары η≈0,98.
6. Коэффициент динамичности внешней нагрузки KД=1,05.
7. Расчетная долговечность Nц.н=800 циклов
8. Коэффициент перегрузки при пробуксовке муфты Kпер=2.
|
|
|
|
|