Рисунок 12 – Схема установления насоса
Выбранный насос разрешает достичь геометрической высоты подъема жидкости HГ£11 м с учетом потерь напора на преодоление гидравлического сопротивления теплообменного аппарата DР=84453 Па.
3.2 Расчет объема накопительного резервуара и уравнительного бака для пастеризованного продукта.
Номинальный объем емкости накопительного резервуара и уравнительного бака для исходного раствора пастеризованного продукта и конденсата:
(м3), (3.1) [13]
Выбирается пять горизонтальных емкостных аппарата.
4 Новизна принятых конструктивных решений
Теплообменные аппараты составляют многочисленную группу теплосилового оборудования, занимая значительные производственные площади и превышая зачастую 50% стоимости общей комплектации в теплоэнергетике, химической, нефтеперерабатывающей и пищевой промышленности, и ряде других отраслей. Поэтому правильный выбор теплообменников представляется исключительно важной задачей.
К настоящему времени можно выделить два наиболее распространенных типа теплообменных аппаратов - кожухотрубные и пластинчатые.
Широко известные традиционные кожухотрубные аппараты, обладая рядом преимуществ, вместе с тем имеют и очень существенные недостатки. В частности - неблагоприятные массогабаритные характеристики, низкие показатели надежности. Эти аппараты почти всегда требуют применения грузоподъемного оборудования, предполагают наличие значительных свободных площадей и далеко не всегда могут быть смонтированы, а тем более заменены при ремонте без демонтажа конструкций здания. Применение в этих аппаратах латунных и гладкостенных труб дополняет неприглядную техническую характеристику. Латунь при определенных условиях (которые почти всегда создаются в теплообменниках, применяемых в отоплении и горячем водоснабжении) подвержена обесцинкованию даже в пресной воде. Цинк попадает в воду горячего водоснабжения, кроме того, происходит разрушение стенок труб.
Но даже и когда эти условия не создаются, усиливается влияние другого отрицательного фактора - образование накипи и иных отложений на стенках труб, что приводит к потере работоспособности аппаратов по критерию "тепловая эффективность".
Следует принять во внимание и достаточно высокие цены на эти аппараты вследствие использования большого количества цветного металла.
На сегодняшний день кожухотрубные теплообменники на порядок уступают пластинчатым теплообменникам.
Сравнение пластинчатых теплообменников с кожухотрубными теплообменниками (см. рис.13)
|
При аналогичных параметрах пластинчатые теплообменники в 3-6 раз меньше по габаритам и составляют 1/6 от веса кожухотрубных теплообменников. Таким образом, экономятся не только площади под установку, но и снижаются начальные затраты. Конструкция кожухотрубного теплообменника обеспечивает гораздо меньшие коэффициенты теплопередачи, чем пластинчатого при аналогичной потере давления. Даже в самых лучших кожухотрубных теплообменниках значительные поверхности труб находятся в мертвых зонах, где отсутствует теплопередача. В отличие от кожухотрубных пластинчатые теплообменники могут быть легко разобраны для обслуживания и ремонта без демонтажа подводящих трубопроводов. Для обслуживания пластинчатых теплообменников требуется площадь в 3-6 раз меньше, чем для кожухотрубных.
Основные преимущества использования пластинчатых теплообменников.
1. Экономичность и простота обслуживания.
При засорении пластинчатый теплообменник может быть разобран, промыт и собран в течение 4-6 часов. В кожухотрубных теплообменниках процесс очистки трубок часто ведет к их разрушению и заглушению.
2. Низкая загрязняемость поверхности теплообмена вследствие высокой турбулентности потока жидкости, образуемой рифлением, а также качественной полировки теплообменных пластин.
3. Срок эксплуатации первой выходящей из строя единицы - уплотнительной прокладки - у ведущих европейских производителей достигает 10 лет. Срок работы теплообменных пластин - 20-25 лет. Стоимость замены уплотнений колеблется в пределах 15-25% от стоимости пластинчатого теплообменника, что экономнее аналогичного процесса замены латунной трубной группы в кожухотрубном теплообменнике, составляющей 80-90% от стоимости аппарата.
4. Стоимость монтажа пластинчатого теплообменника составляет 2-4% от стоимости оборудования, что на порядок ниже, чем у кожухотрубного теплообменника.
5. Даже теплоноситель с заниженной температурой в системах теплоснабжения позволяет нагревать воду в пластинчатом теплообменнике до требуемой температуры.
6. Индивидуальный расчет каждого пластинчатого теплообменника по оригинальной программе завода-изготовителя позволяет подобрать его конфигурацию в соответствии с гидравлическим и температурным режимами по обоим контурам.
7. Гибкость: в случае необходимости площадь поверхности теплообмена в пластинчатом теплообменнике может быть легко уменьшена или увеличена простым добавлением или извлечением пластин.
8. Двухступенчатая система горячего водоснабжения, реализованная в одном пластинчатом теплообменнике, позволяет значительно сэкономить на монтаже и уменьшить требуемые площади под индивидуальный тепловой пункт.
9. Конденсация водяного пара в пластинчатом теплообменнике снимает вопрос о специальном охладителе, т.к. температура конденсата может быть 50 С и ниже.
10. Меньше ограничений в работе: замерзание воды в пакете пластин не приводит к фактическому повреждению аппарата. После оттаивания пластинчатый теплообменник готов к эксплуатации, а кожухотрубный теплообменник получает повреждение трубок.
11. Устойчивость к вибрациям: пластинчатые теплообменники высокоустойчивы к наведенной двухплоскостной вибрации, которая может вызвать повреждения кожухотрубного теплообменника.
Рассмотрим сравнительную характеристику кожухотрубного и пластинчатого теплообменника (см. рис.14)
|
Добиться того, чтобы кожухотрубный теплообменный аппарат обладал комплексом преимуществ не уступающих, а даже и превосходящих пластинчатый теплообменник, удалось, соединив воедино целый ряд давно известных, но не реализуемых по технологическим причинам рекомендаций (а также - ряд новшеств): увеличением поверхности теплообмена (оребрением ее со стороны теплоносителя с меньшим коэффициентом теплоотдачи), у величениемкоэффициента теплоотдачирациональным подбором гидродинамики теплоносителя, плотно упакованные трубные пучки; особотонкостенные трубки уменьшенного диаметра, имеющие специальный профиль; неметаллические трубные решетки, изготавливаемые по специально отработанной технологии. Корпус аппарата также имеет ряд особенностей: особотонкостенные трубы, термическая разгруженность цепочки "корпус-трубный пучок" путем применения плавающих трубных решеток (обеспечивается разборность аппарата и снимаются ограничения по подаче холодной и горячей сред в любую полость), повышение надежности по показателю взаимопроникновения сред благодаря применению двойного уплотнения с сигнальными отверстиями, использование специальных направляющих перегородок. Как для теплопередающих трубок, так и для корпусов используются высоколегированные коррозионностойкие стали или титановые сплавы, что обеспечивает заданные показатели надежности при характерных для наших теплообменников повышенных скоростях движения сред.
Для проведения процесса пастеризации продукта спроектирован теплообменный кожухотрубній аппарат: кожух Æ360´5 мм, теплообменные трубы Æ30´2,5 мм, расположение труб в трубной решетке — по сторонам и вершинам квадратов (корридорное), количество труб n=12, количество ходов по трубному пространству z=4; площадь поверхности теплообмена F=2,43 м2.
ВЫВОД
Данный курсовой проект представляет собой комплекс расчетно-графических работ, по конструированию, выбору кожухотрубного теплообменника и подбору вспомогательного оборудования к нему для проведения технологических процессов в мясной промышленности.
Спроектированный на основании расчетов и подборов четырехходовой кожухотрубный теплообменный аппарат позволяет проводить необходимые процессы с заданными параметрами.
В ходе проведения проектных и расчетных работ (конструктивный расчет, гидравлический расчет, расчет на прочность) выбраны конструктивные единицы, подтверждена механическая надежность, экономически-обоснованный выбор (материал труб, длина и т. д.), конструктивное совершенство аппарата. Эти факторы являются основными для высокопродуктивной, бесперебойной работы оборудования в промышленных условиях.
Список использованной литературы
1 ГОСТ 14249-89. Сосуды и аппараты. Нормы и методы расчета на прочность. — Взамен ГОСТ 14249-89; Введ. 18.05.89. — М.: Гос. ком. СССР по стандартам, 1989. — 80 с., ил.
2 ГСТУ 3-17-191-2000. Посудини та апарати стальні зварні. Загальні технічні умови. — На заміну ОСТ 26-291-94; Введ. 16.02.2000. — К.: Державний комітет промислової політики України, 2000. — 301 с., іл.
3 ДНАОП 0.00-1.07-94. Правила устройства и безопасной эксплуатации сосудов, работающих под давлением. Введ. 01.03.1995. — К.: Государственный комитет Украины по надзору за охраной труда, 1994. — 200 с., ил.