Для создания маски для последующего осаждения никеля использовался химически стойкий лак ХСЛ. До нанесения ХСЛ пластины кремния обезжиривались кипячением в изопропиловом спирте в течение 10 – 25 сек с последующей сушкой в парах изопропилового спирта.
Осаждение контактного слоя никеля на свободные от ХСЛ участки структуры осуществляли электрохимическим способом с использованием электролита следующего состава (в пересчете на 1 л дистилированной воды):
NiSO4×7H2O – 45,4 г/л;
Na2SO4×10H2O – 60 г/л;
Н3ВО4 – 30 г/л.
Схема установки для электрохимического осаждения никеля приведена на рис. 4.1.
Рис. 4.1. Схема установки для электрохимического осаждения никеля: 1 – ванна; 2 – электролит; 3 – пластина кремния; 4 – пластинка никеля; 5 – амперметр; 6 – электронагреватель; 7 – блок питания.
В качестве анода электролитической ванны использовалась никелевая фольга толщиной порядка 200 мкм. Катодом служила сама кремниевая структура. В качестве источника постоянного тока использовался блок питания Б5-47/1, работающий в режиме стабилизации тока. Осаждение производилось при плотности тока 2 - 5 мА/см2 и температуре электролита 35°С в течение 2 – 3 мин.
После нанесения слоя никеля структуры промывались в дистиллированной воде и производилось механическое удаление защитного слоя лака ХСЛ. Для удаления остатков лака применялось кипячение пластин в толуоле.
4.3. Измерение основных параметров на структурах солнечных элементов
Наиболее важными характеристиками солнечных элементов являются световая и прямая темновая вольт-амперные характеристики (ВАХ) и спектральная чувствительность.
Основной параметр СЭ – световая нагрузочная ВАХ – позволяет определить генерируемую электрическую мощность по произведению Im∙Um (максимальные рабочие ток и напряжение), оценить полноту использования потенциала запрещенной зоны по напряжению холостого хода, получить представление об уровне оптических и фотоэлектрических потерь по току короткого замыкания и коэффициенту заполнения ВАХ; рассчитать коэффициент полезного действия преобразования солнечной энергии в электрическую по отношению мощности, генерируемой СЭ, к мощности падающего солнечного излучения, которую можно измерить с помощью отградуированного эталонного солнечного элемента.
ВАХ идеальных фотоэлектрических преобразователей (ФЭП) может быть описана выражением:
(4.1)
где I и V – ток во внешней цепи и напряжение на сопротивлении нагрузки; Iф – фототок, генерируемый в полупроводнике солнечным излучением; Io – ток насыщения ФЭП, определяющийся механизмами генерационно-рекомбинационных явлений; А ≥ 1 – фактор качества выпрямляющего перехода; е – заряд электрона; k – постоянная Больцмана; Т – абсолютная температура.
В выражении (4.1) не учитываются некоторые важные характеристики реальных ФЭП, которые могут в значительной степени влиять на эффективность фотоэлектрического преобразования. К числу таких характеристик можно отнести последовательное сопротивление ФЭП Rп, определяющееся сопротивлением объема полупроводниковой базы, контактными сопротивлениями верхнего и нижнего токосъемных электродов и распределенным сопротивлением верхней (освещаемой) области перехода, а также шунтирующее коллекторный переход сопротивление Rш, на величину которого существенно влияют как технологические факторы, так и параметры используемого полупроводникового материала. Эквивалентная схема реального полупроводникового ФЭП с учетом названных паразитных сопротивлений и сопротивления нагрузки показана на рис. 4.2. Нетрудно показать, что в последнем случае ВАХ может быть описана соотношением [18]:
|
|
|
|
|
|
|
Рис. 4.2. Эквивалентная схема фотопреобразователя.
Рассмотрим более подробно физические процессы, определяющие эффективность преобразования энергии солнечного излучения в электрическую энергию. На рис. 4.3 показана типичная ВАХ полупроводникового ФЭП, описываемая выражением 4.2.
|
|
|
|
|
|
|
Рис.4.3. Вольт-амперная характеристика солнечного фотопреобразователя.
Можно видеть, что по мере увеличения сопротивления нагрузки напряжение V фотопреобразователя монотонно увеличивается и при Rн → ∞ достигает определенного значения Vхх, величина которого зависит как от интенсивности солнечного излучения, так и от характеристик самого ФЭП. С другой стороны, ток I во внешней цепи при увеличении Rн вначале изменяется слабо, оставаясь примерно равным току короткого замыкания Iкз, а затем достаточно резко уменьшается при дальнейшем увеличении Rн . На ВАХ существует единственная точка M, в которой мощность Pm, отдаваемая ФЭП во внешнюю цепь, оказывается максимальной и равной площади следующего прямоугольника:
. (4.3)
Для характеристики внутренних потерь ФЭП обычно используют так называемый коэффициент заполнения ВАХ F, равный отношению Pm к произведению тока короткого замыкания ФЭП на напряжение холостого хода:
(4.4)
С учетом (4.4) КПД η полупроводникового фотопреобразователя может быть определен как отношение максимальной мощности, отдаваемой ФЭП во внешнюю нагрузку, к суммарной мощности солнечного излучения Pи, падающей на фотоприемную поверхность:
(4.5)
Определим коэффициент полезного действия n+-p СЭ с текстурированной поверхностью (см. 4.1). Для измерения мощности падающего на СЭ солнечного излучения использовался измеритель мощность ИМО 3. В момент измерений мощность падающего излучения составляла P0 ~ 70 мВт/см2.
При измерении световой нагрузочной ВАХ солнечного элемента были получены следующие значения напряжения и тока (табл. 4.1):
Таблица 4.1.
Результаты измерения световой нагрузочной ВАХ
V,B
0
0,008
0,017
0,025
0,031
0,034
0,035
0,036
0,038
I,mA
0,39
0,38
0,35
0,32
0,26
0,17
0,13
0,09
0
По этим данным строится ВАХ фотопреобразователя (рис. 4.4):
|
Рис. 4.4. ВАХ n+-p СЭ с текстурированной поверхностью.
Из графика на рис. 4.2 определяем, что Vm=0,028 B, Im=0,3 mA. Площадь поверхности СЭ составила S=16 мм2, соответственно Pист=P0·S= 70 мВт/см2· 0,16 см2 = 11,2 мВт.
Фактор заполнения F считаем по формуле (4.4):
Коэффициент полезного действия солнечного элемента определяем по формуле (4.5):
Такой низкий КПД полученного солнечного элемента в большой степени определяется тем, что не удалось создать хорошего омического контакта. Кроме того, при диффузии с применением поверхностного источника на основе спиртового раствора ортофосфорной кислоты при нанесении раствора на пластину на тыльной стороне пластины образуются затеки. При проведении процесса диффузии на тыльной стороне пластины образуется p – n переход. Для снятия с тыльной стороны подложек слоя кремния с находящимся в нем в результате диффузии фосфором, приводящим к увеличению последовательного сопротивления СЭ на тыльном контакте необходимо применять, например, плазмохимическую обработку. Так как такой операции не было проведено, то можно сделать заключение, что образование на тыльной стороне p – n перехода существенно ухудшает электрофизические параметры СЭ.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17