Считается, что особое внимание должно быть уделено выбору подходящей дисперсионной среды, которая должна легко испаряться.
Методом наплавления создают только пленки из легкоплавких силикатных (или других) стекол. Метод прост. Основным недостатком таких пленок является содержание в них посторонних примесей, попадающих в фритту из материала мелющих тел и футеровки мельниц при длительном помоле.
1.1.7. Легированные окислы
Одним из методов, позволяющих в широких пределах варьировать поверхностную концентрацию, является диффузия из легированных окислов. Помимо возможности варьирования поверхностной концентрации, метод позволяет осуществлять локальную диффузию (не только в том смысле, что диффузия будет идти в участки поверхности кремния, не защищенные маскирующим слоем, но и в том смысле, что она будет происходить только там, куда нанесен легированный окисел). Сущность метода заключается в том, что на всю поверхность кремниевой пластины или на какие-либо ее участки перед диффузией наносится слой двуокиси кремния, легированный в необходимой степени заданной примесью. Этот слой окисла является источником диффундирующих атомов. Для создания такого легированного окисла может, например, использоваться метод пиролитического разложения [14] или метод получения легированных пленок из пленкообразующих растворов. Второй метод будет рассмотрен более подробно, так как он находит применение для промышленного изготовления современных кремниевых солнечных элементов.
1.1.7.1. Получение пленок стекла методом пиролитического разложения
Пиролизом принято называть процесс термического разложения химических соединений, при котором выделяется твердое пленкообразующее вещество и летучие ингридиенты. Обычно процесс термического разложения осуществляют в инертном газе или в вакууме. В последнем случае вакуумированный объем заполняется парами вещества, подвергающегося пиролитическому разложению. Процесс пиролиза протекает легко. Он возбуждается нагреванием до такой температуры, при которой начинается деструкция молекулы на составляющие ее атомы и группы атомов.
В зависимости от исходного вещества путем пиролиза можно получать оксидные, металлические, неметаллические и другие виды пленок. Наиболее широко распространен пиролиз кремнийоксиорганических соединений [14], при котором в качестве твердого продукта реакции выделяется двуокись кремния:
700°С
C2H5Si(OC2H5) → SiO2.
В лабораторной и промышленной практике элементоксиорганические соединения разлагают в нагретом объеме, а образующиеся при разложении окислы направляют через насадку. Истекающую из насадки струю направляют на поверхность покрываемой пластины.
Следует подчеркнуть, что пиролизом можно получать окислы различных элементов, для чего в качестве исходных материалов необходимо брать соответствующие элементоксиорганические соединения. Условия, при которых осуществляется пиролиз, для каждого соединения подбираются экспериментальным путем. Некоторые примеры исходных веществ и образующихся из них пленок приведены в табл. 1.1.
Таблица 1.1.
Условия пиролиза некоторых элементоксиорганических соединений
Соединение
Состав окисной пленки
Температура, °С
Давление, мм рт. ст.
Этилтриэтоксисилан C2H5Si(OC2H5)3
SiO2
700
780
Тетраэтоксисилан (C2H5O)4Si
SiO2
740
1000
Трибутоксиалюминий (C4H9O)3Al
Al2O3
660
1100
Тетраэтоксититан (C2H5O)4Ti
TiO2
600
820
Трибутилборат (C4H9O)3B
B2O3
450
760
Кроме давления и температуры на кинетику процесса пиролитического разложения существенное влияние оказывает состав газовой среды. Экспериментально установлено, что винилтриэтоксисилан разлагается при 600–700°С, а тетраэтоксисилан – при 728–840°С [14]. Введение же кислорода в качестве газа-переносчика в реакционное пространство позволяет снизить температуру деструкции указанных кремнеорганических эфиров до 350°С .
Методом пиролиза можно также получать пленки, состоящие из окислов двух и более элементов. При использовании стеклообразующих окислов можно получать стекловидные пленки. В [6] рассмотрен способ получения легированной двуокиси кремния. При этом пластины кремния помещают в печь при не очень высокой температуре (750°С) и над ними пропускают пары алкоксисилана, легированного, например, триметилборатом или трипропилборатом (в случае диффузии бора) или триметилфосфатом (в случае диффузии фосфора). Попадая на поверхность кремниевых пластин, пары силана разлагаются и образуют слой легированного окисла.
Пластина с нанесенным легированным окислом помещается в печь с потоком нейтрального газа, и при температуре осуществляется диффузионная выдержка. Если несущий газ содержит кислород, то граничащие с кремнием слои источника могут обедняться за время порядка 1 ч. При использовании в качестве лигатуры триметилбората возможно получение поверхностной концентрации бора от 1018 до 1020 см–3, а в случае применения трипропилбората поверхностная концентрация может меняться в пределах от 1017 до 1019 см–3. Окислы, легированные триметилфосфатом, позволяют менять поверхностную концентрацию фосфора от 1019 до 2∙1020 см–3. (Все эти данные для диапазона температур 1100 – 1300°С.) Метод позволяет обеспечить довольно малый разброс поверхностной концентрации (4 – 5 %).
Однако поскольку перенос вещества, содержащего диффузант, осуществляется в газообразной среде, этому методу присущи некоторые недостатки, связанные в первую очередь с процессом переноса компонент осаждаемого слоя. К их числу следует отнести следующие [14]:
1. Трудность обеспечения точной дозировки примеси. Количество осаждаемой примеси по указанному методу определяется расходом газа, температурой смеси органосилана и легирующего вещества, температурой полупроводниковой пластины, временем проведения процесса. Точность дозировки примеси определяется точностью поддержания указанных параметров.
2. Неравномерность распределения диффузанта по поверхности полупроводниковой пластины, вызываемая турбулентностью потока компонент в реакторе.
3. Нелинейность зависимости количества диффузанта в осаждаемом слое от процентного содержания смеси.
4. Длительность процесса нанесения и сложность используемого оборудования для пиролитического разложения, обеспечивающего высокую чистоту процесса.
1.1.7.2. Источники, полученные осаждением пленок стекла из пленкообразующих растворов
Для создания силикатных пленок в сравнительно "мягких" условиях представляется перспективным применение пленкообразующих растворов, содержащих соединения, разлагающиеся при сравнительно низких температурах. Это могут быть продукты гидролитической поликонденсации таких кремнеорганических эфиров, как, например, этиловый или бутиловый эфир ортокремневой кислоты, либо таких соединений, как диметилэтоксихлорсилан, которые при гидролитической поликонденсации образуют силоксановые цепи, склонные образовывать полимеры. Если нанести подобный раствор на твердую поверхность, то после испарения растворителя на поверхности останется пленка. Последующая кратковременная термоокислительная деструкция при температурах 250 – 700°С превращает пленку в стекловидную.
Наиболее известным методом получения пленок SiO2 из пленкообразующих растворов является метод, когда в качестве исходных кремнийорганических соединений используются алкоксисиланы [13,14]. По своей химической структуре эти соединения представляют собой гидрид кремния Sigh4, в котором все атомы водорода замещены радикальными группами. Например, в тетраэтоксисилане (ТЭС) Si(OC2H5)4 эти группы имеют состав (OC2H5). Следует заметить, что тераэтоксисилан имеет несколько синонимов, наиболее распространенными являются: этилсиликат, этиловый эфир ортокремневой кислоты, тетраэтоксикремний, тетраэтилоксисилан, тетраэтилортосиликат, промышленное название – этилсиликат-40 (40 % SiO2) [15]. Другие этоксисиланы содержат одну-три группы (OC2H5), а остальные радикалы у кремния замещены какими-либо другими органическими группами. При нормальных условиях эти соединения представляют собой жидкости, пары которых разлагаются в диапазоне 600 – 900°С. Процесс получения пленок SiO2 осуществляется в три стадии: получение пленкообразующего раствора, нанесение пленки и ее термодеструкция. Рассмотрим его на примере использования в качестве исходного соединения тетраэтоксисилана Si(OC2H5)4 [14].
При получении пленкообразующего раствора вначале осуществляют гидролиз исходного соединения:
R R
׀ ׀
R – Si – R + 2H2O → HO – Si – OH + 2HR
׀ ׀
R R
(R – функциональная группа – OC2H5).
Далее, вводя катализатор (соляную кислоту), осуществляют реакцию поликонденсации гидроксильных групп с образованием силоксановых связей:
׀ ׀ ׀ ׀
– Si – OH + HO – Si – → – Si – O – Si – + H2O.
׀ ׀ ׀ ׀
В результате этой реакции раствор приобретает пленкообразующие свойства. В раствор могут вводиться растворитель (ацетон, этиловый спирт), а также легирующие элементы, например в виде азотнокислых солей.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17