Разработка программных средств анализа графика функции и решение оптимизационных задач

-расчетно-динамический цикл (новый, характерный для электронной таблицы), количество повторений которого определяется в ходе пересчета таблицы, а параметры задаются в результате ссылки на ячейку, где содержаться расчетно-переменные данные.

-    итерационный цикл (количество повторений заранее неизвестно и зависит от осуществления или достижения заданной точности или последовательности приближений к  искомому значению, где вычисление последующего члена производится через предыдущий член);

5 Метод половинного деления

 

Этот метод отличается от выше рассмотренных методов тем, что для него не требуется выполнения условия, что первая и вторая производная сохраняют знак на интервале [a, b]. Метод половинного деления сходится для любых непрерывных функций f(x) в том числе недифференцируемых.

Разделим отрезок [a, b] пополам точкой Если (что практически наиболее вероятно), то возможны два случая: либо f(x) меняет знак на отрезке [a, c] (Рис. 1), либо на отрезке [c, b] (Рис. 2)


Рис. 1

Рис. 2


Выбирая в каждом случае тот отрезок, на котором функция меняет знак, и продолжая процесс половинного деления дальше, можно дойти до сколь угодно малого отрезка, содержащего корень уравнения.


   6 РЕШЕНИЕ ЗАДАЧИ


Дана следующая функция:

F(х)=60*sin(5.5*x*pi/180)-69*cos(2.7*x*pi/180)-exp(x/192)-181/x

где Х изменяется от 0 до 400. Найти точки пересечения функции с точкой А (А=0).

Для нахождения точек пересечения используем метод половинного деления. Для этого от данной функции отнимем А  (F(x)-А).

Построим алгоритм (приложение А).

Для того, что бы найти точки пересечения функции с точкой А, построим график (приложение В) по данным приведенным в таблице (приложение Г).

В графе Е2 введем формулу для нахождения значений где происходит смена знака =ЕСЛИ(В2*В3<=0; “смена знака”;” “).

По полученным данным  найдем точки пересечения данной функции с точкой А в точках где происходит смена знака.

Например, смена знака происходит при значении Х=15, тогда в ячейку G2  введем значение Х1=15,а в ячейку G3 введем формулу =ЕСЛИ(J2*L2<=0;G2;I2). В ячейку Н2-значение Х2=20, а в ячейку Н3 введем формулу =ЕСЛИ(J2*L2<=0;I2;H2), это значит, что на этом интервале про исходит пересечение функции с координатной осью, то есть с точкой А.  Для нахождения среднего значения в ячейку I2 введем формулу =(G2+H2)/2. В ячейки J2, K2, L2 введем формулы заданной в условии функции, где Х, для каждой из заданных ячеек, будет принимать значение Х1, Х2, Хср. соответственно.

Для того, чтобы  определить на какой половине происходит смена знака в ячейку М2 введем формулу

 =ЕСЛИ(J2*L2<=0;”смена знака на 1-ой половине”;”cмена знака на 2-ой половине”).

В столбце N приведено количество шагов,  за которое будит достигнута точность определения значения (х) не ниже 0,001.

Для определения погрешности, в ячейку О2  введем формулу =0-L2. Таким образом из приведенной таблицы видно, что значение Х с точностью до 0,001 определено за 14 шагов.

 

X1

X2

Xср

F(x1)

F(x2)

F(xcр)


Кол-во шагов

Погреш-ность

15,000

20,000

17,500

-6,129

5,665

1,368

смена знака на 1-ой половине

1

-1,3678

15,000

17,500

16,250

-6,129

1,368

-1,969

смена знака на 2-ой половине

2

1,9692

16,250

17,500

16,875

-1,969

1,368

-0,199

смена знака на 2-ой половине

3

0,1991

16,875

17,500

17,188

-0,199

1,368

0,610

смена знака на 1-ой половине

4

-0,6096

16,875

17,188

17,031

-0,199

0,610

0,212

смена знака на 1-ой половине

5

-0,2116

16,875

17,031

16,953

-0,199

0,212

0,008

смена знака на 1-ой половине

6

-0,0078

16,875

16,953

16,914

-0,199

0,008

-0,095

смена знака на 2-ой половине

7

0,0952

16,914

16,953

16,934

-0,095

0,008

-0,044

смена знака на 2-ой половине

8

0,0436

16,934

16,953

16,943

-0,044

0,008

-0,018

смена знака на 2-ой половине

9

0,0179

16,943

16,953

16,948

-0,018

0,008

-0,005

смена знака на 2-ой половине

10

0,0050

16,948

16,953

16,951

-0,005

0,008

0,001

смена знака на 1-ой половине

11

-0,0014

16,948

16,951

Страницы: 1, 2, 3, 4, 5, 6, 7



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать