Исследования последних лет показали целесообразность небольшого подогрева в весенний период массивных каменных неотапливаемых зданий для того, чтобы избежать увлажнения охлажденной кладки выпадающим конденсатом влаги воздуха. К подобным выводам пришел и крупнейший итальянский специалист в этой области Дж. Массари.
Укрепление оснований
и фундаментов объекта
Самые серьезные повреждения древнего здания обычно связаны с нарушением его статического равновесия. Из-за неравномерной осадки возникают трещины в стенах и сводах, перекосы проемов и разрушение их перемычек, наклоны отдельных стен или всего здания в целом и т. п. (рис. 104, 105). Иногда это объясняется неудачным в свое время выбором места для постройки и недоучетом отрицательных свойств грунтов в целом или их части (Успенский собор в Рязани). Иногда это зависит от неудачной конструкции фундамента, приведшей к разрушениям (выкладка на глине и т. п.), или от недостаточной, не отвечающей расчетам ширины. Вопросы укрепления кладки фундаментов, уширения площади их подошвы, подводки новых фундаментов уже в достаточной мере освещены в специальной литературе [10; 52, с. 136—143 и др.]. Вместе с тем неравномерная осадка фундаментов часто объясняется ухудшившимся состоянием грунтов: уменьшением их несущей способности в результате замачивания (просадка лессовых грунтов), гниением органической части насыпных грунтов, гниением деревянных свай, вымыванием мелких фракций песчаных грунтов при изменении режима грунтовых вод или устройством вблизи здания подземных выработок. В данном разделе вниманию реставраторов предлагаются прогрессивные методы укрепления оснований, получившие распространение за последние 10—15 лет.
Рязань . Успенский собор. Схема последовательности подводки фундаментов. 1 – линия шурфов;2 – участок ранней подводки фундаментов; 3 – проемы, закладываемые во время подводки фундаментов; 4 – участки подводки фундаментов.
Химическое закрепление грунтов основания
Как показал многолетний опыт строительства, в целях прекращения деформаций для усиления основания архитектурного памятника целесообразно применять химическое закрепление грунтов под фундаментами. Советская архитектурная практика в настоящее время располагает разными способами такого химического закрепления.
Успешному применению разработанных глубинных способов закрепления в значительной степени способствовало установление определенных границ применения той или иной рецептуры закрепляющих растворов в грунтах с определенным коэффициентом фильтрации. Здесь приводится таблица, в которой указаны химические реагенты, используемые в различных рецептурах, границы применения этих рецептур, характер геля и закрепления По горизонтали в таблице приведены наименования грунтов и величина коэффициента фильтрации. При этом крупнозернистые, более проницаемые грунты расположены слева направо с постепенным уменьшением их водопроницаемости. Исходные материалы для закрепления грунтов представлены цементом, силикатом и смолами, а для введения химических растворов в глинистые грунты используется постоянный электрический ток.
Архангельск. Колокольня Боровско-Успенской церкви. Схема выпрямления, выполненная П. Н. Покрышкиньш в начале XX в. Детали нижнего окна после выпрямления (а) и до выпрямления (б)
Классификация физико-химических способов закрепления грунтов, разработанная проф. Б. А. Ржаницыным
прочное закрепление Уплотнение Стабилизация кяслыи гель Щелочной гель |
Для хорошо проницаемых грунтов разработана рецептура цементно-глинистых растворов. Эти растворы по сравнению с цементно-песчаными имеют преимущества, они легче прокачиваются насосами и меньше их изнашивают, при продвижении в трещинах и порах грунтов двигаются как тиксотропные с тупым углом и дают 100%-ный выход водонепроницаемого камня. Эти растворы целесообразно применять в песчано-гравелистых грунтах с коэффициентом фильтрации от 80 до 500 м/сут.
Учитывая, что современный крупный помол цемента не позволяет цементным частицам проникать в поры песков, для закрепления этих грунтов применяется раствор, состоящий из силиката и глины. При этом в зависимости от качества используемой глины границы применимости характеризуются грунтами с коэффициентом фильтрации от 60 до 100 м/сут при использовании местных глин и от 20 до 50 м/сут при применении бентонитовых глин. Для прочного закрепления песчаных грунтов разработан способ, основанный на поочередном нагнетании в песчаный грунт двух растворов: силиката натрия и хлористого натрия. Б результате химической реакции между этими растворами в порах грунта выделяется гель кремниевой кислоты, грунт быстро закрепляется, становится водонепроницаемым
с прочностью 20—60 кгс/см2, а само закрепление долговечно.
Для мелкозернистых песчаных грунтов, имеющих коэффициент фильтрации от 0,5 до 5 м/сут, разработан способ однорастворной силикатизации с помощью фосфорной кислоты, серной кислоты и сернокислого алюминия, алюмината натрия и кремнефтористоводородной кислоты. При этом способ однорастворной силикатизации с помощью кремнефтори-стоводородной кислоты наиболее эффективен и дает значительную прочность закрепления порядка 20—50 кгс/см2. Кроме того, он позволяет закреплять мелкие песчаные грунты с любым содержанием гумуса. Эта категория грунтов может быть также успешно закреплена разработанным в последние годы способом газовой силикатизации, основанным на поочередном нагнетании в грунт силиката натрия и углекислого газа по схеме; СО2 — силикат натрия — СО2. Грунт при этом приобретает прочность, равную 8—15 кгс/см2.
Начиная с 1959 г. в строительстве применяется разработанный Институтом оснований способ закрепления мелких песков карбамидной смолой. Карбамидная смола, продукт поликонденсации формальдегида с мочевиной и ее производными, способна полимеризоваться при нормальной температуре в присутствии отвердителя — соляной, щавелевой кислот или хлористого аммония. Закрепление мелкозернистых песчаных грунтов карбамидной смолой (КМ с отвердителем в виде 3- и 5%-ного НС1), обеспечивающее этим грунтам достаточно высокую прочность закрепления порядка 50 —80 кгс/см2, успешно применяется в строительстве. В связи с развитием химии и удешевлением исходных для закрепления химических продуктов он находит все более широкую сферу использования.
Для закрепления просадочных лессовых грунтов применяется однорастворная силикатизация, заключающаяся в нагнетании в грунт силиката натрия с удельным весом 1,13. Прочность закрепления 15—40 кгс/см2. Для закрепления глинистых грунтов используется явление электроосмоса. При вводе в грунт химических растворов этим способом глинистому грунту сообщается водостойкость и ликвидируется его пучинность.
Располагая таким арсеналом приемов химического закрепления грунтов при лечении основания памятника архитектуры, всегда можно подобрать, в зависимости от геологии участка и фильтрационных свойств грунтов, наиболее рациональный в данных условиях метод.
Уменьшение несущей способности естественных грунтовых оснований связано главным образом с лессовыми просадочными грунтами.
Одним из примеров значительных деформаций на таких грунтах и последующих мероприятий по их ликвидации может служить Одесский оперный театр. Здание театра построено в 1887 г. архитекторами Ф. Фельнером и Г. Гельмером (рис. 107, 108). Театр имеет 5 ярусов и двухэтажный подвал. Высота здания 30 м, площадь 5000 м2, объем 100 тыс. м3. Основной несущий остов здания — каменные стены из кирпича и плотного известняка. Фундаменты здания ленточного типа из плотного известняка шириной от 2 до 0,6 м. В 1900 г. были обнаружены значительные неравномерные осадки: восточная сторона здания осела местами до 21 см, полы осели от 6,5 до 11 см. Некоторые стропильные фермы также значительно изменились. Экспертная комиссия рекомендовала исключить замачивание под фундаментами путем прокладки коммуникаций в проходных тоннелях. Это было выполнено, но осадки продолжались.
Закрепление проводилось в полукруглой части здания в два ряда инъекторов, в прямоугольной—в один ряд. Инъекторы забивались вертикально на расстоянии 10—15 см от стены (1 ряд) и на 1 м друг от друга. Забивка осуществлялась с помощью колонкового перфората КИМ-4, в котором бур был заменен бойком. Скорость забивки составляла 12— 20 м/ч, радиус закрепления от одного инъектора—0,6 м. Силикатный раствор рабочей концентрации нагнетали по заходкам сверху вниз, величина заходки 1,3 м. Число заходок зависело от мощности напластования лессовых грунтов и колебалось от 3 до 8. В каждую заходку нагнетали 514 л раствора. Нагнетание раствора осуществлялось тремя шести-плунжерными насосами НС-1. Давление при нагнетании раствора в основном колебалось в пределах 1—-3 атм. Скорость нагнетания раствора в среднем составляла 4 л/мин. Одновременно нагнетали в 6 и более инъекторов. За сутки при работе в 3 смены (по 18 человек в смену) закреплялось 50 м3 грунта.
Число инъекционных точек 2300. Общий погонаж забивки шгьекторов 22 тыс. м. Закачено раствора 5400 мэ. Израсходовано силикат-глыбы {разварка псоизволилась на месте) 1200 т.
Объем закрепленного грунта—15 436 м3. Контроль результатов работ показал монолитность закрепления и его кубиковую прочность, равную 15—25 кгс/см2. Наблюдения, проводимые параллельно работам по силикатизации, показали затухание осадок в процессе работ, а по окончании работ полное их прекращение.
Гниение в насыпных грунтах органических примесей — одна из распространенных причин, вызывающих неравномерные осадки фундаментов. Это в значительной степени объясняется тем, что памятники архитектуры чаще всего строились в сложившихся частях города, где уже имелся значительный культурный слой.
Здание Потешного дворца в Московском Кремле подвергалось, например, незатухающим осадкам в течение почти 300 лет. За это время они составили около 1 м. Причина — наличие в основании здания мощного слоя (10—11 м) насыпного грунта с большим содержанием органических примесей, так как площадка, на которой был сооружен дворец, расположена рядом с царскими конюшнями. Неравномерное распределение органических веществ привело к неравномерным осадкам отдельных частей здания. В состав насыпных грунтов здесь входят пески, супеси, суглинки и перегной. Проектом усиления основания дворца предусмотрено химическое закрепление грунтов, слагающих насыпную толщу. В результате проведения лабораторных работ на грунтах из основания здания в качестве закрепляющего раствора был рекомендован щелочной силиказоль следующего состава: силикат натрия с удельным весом 1,3 г/см3 (3,5 объема) + кремнефтористоводородная кислота с удельным весом 1,1 г/см3 (1 объем) со временем гелеобразования при температуре 14°С30—35 мин.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10