Реставрация каменных зданий

Химическое закрепление грунтов в сравне­нии с другими методами имеет ряд преиму­ществ: простоту производства работ; порта­тивность применяемого оборудования; корот­кие сроки выполнения работ; долговечность закрепления; возможность закрепления грунта на любой глубине без проведения каких-либо специальных выработок и земляных работ; возможность проведения подземных работ без прекращения эксплуатации здания или соору­жения. Приведенные случаи применения хи­мического метода закрепления грунтов под­тверждают эффективность и целесообразность использования этого метода в целях сохране­ния уникальных памятников  архитектуры.


Усиление фундаментов и оснований с помощью корневидных свай

В связи с реконструкцией старых городов, их центральных районов и реализацией пла­нов по подземной урбанизации часто возника­ет необходимость передачи в новых условиях нагрузок на большую глубину, тем самым обеспечивая сохранность зданий-памятников. Из-за плохого состояния многих памятников архитектуры исключается возможность обыч­ного способа понижения уровня передачи на­грузки на грунт с помощью забивных свай, устанавливаемых посредством ударных и виб­рационных механизмов. Нет возможности при­менять забивные сваи и тогда, когда наруше­но устойчивое равновесие памятников в результате изменения гидрогеологического ре­жима или изменения нагрузок, а также про­изводства подземных работ вблизи памятни­ков. При этом, однако, возможно использова­ние корневидных свай.

Корневидные сваи представляют собой бу­ровые сваи малого диаметра, заполненные цементным раствором под давлением, распо­лагаемые практически под любыми углами к дневной поверхности и способные образовы­вать совместно с грунтом единую комплексную

структуру. В эту структуру могут быть вовле­чены и конструктивные элементы памятника: фундаменты и стены. На рис. показана схема установки корневидных свай, одновре­менно усиливающих стены, фундаменты и основания. За счет давления при подаче раст­вора в скважину происходит некоторое увеличение диаметра сваи (до 30—50%), неравно­мерное по ее длине, вследствие чего сущест­венно увеличивается сцепление материала сваи  с  грунтом.

Проходка ствола скважин осуществляется буровыми стайками вращательного (иногда пневмоударного) бурения. В качестве рабо­чего органа служат буровые коронки, армиро­ванные победитом, шарошечные или кресто­вые долота. Для бурения могут быть исполь­зованы высокопроизводительные дизельные станки и менее производительные, но малога­баритные станки с электроприводом, приспо­собленные для производства работ в подва­лах высотой до 2 м и в стесненных условиях. При бурении в неустойчивых грунтах (супеси, пески) стенки скважин крепятся обсадными трубами соответствующих диаметров. В этих случаях обсадные трубы выполняют роль бу­рильных труб.

Бетонирование свай производится через нагнетающие трубы диаметром 18—60 мм в за­висимости от диаметра скважин под давле­нием 3—6 атм. с одновременным, по мере за­полнения скважины, подъемом обсадных труб. Нагнетающие трубы собираются на муфтах. Перед бетонированием в случае засорения скважины грунтом производится промывка во­дой. В отдельных случаях применяется опрессовка скважин воздухом, что позволяет созда­вать расширение свай (например, под укреп­ляемым фундаментом).

Диаметры корневидных свай применяются от 89 до 280 мм, длина свай может коле­баться в пределах 7—40 м и определяется геологическими условиями, характером соору­жения и величиной нагрузки. Сваи выполняются как с армированием, так и без армиро­вания. При армировании свай используется одиночная арматура диаметром 12—16 мм. В отдельных случаях в скважинах оставляют обсадные трубы или трубы для подачи ра­створа, которые выполняют роль арматуры. Расстояние между сваями определяется в за­висимости от нагрузки и несущей способности сваи. Минимальное расстояние между сваями в пределах 3—5 диаметров свай.

В проектах на основе имеющихся сведе­ний о геологическом строении участка, опре­деляется диаметр свай, их количество, нагруз­ка на сваю, которая определяется в резуль­тате статических испытаний. По результа­там испытаний свая диаметром 100 мм (по обсадной трубе), длиной 7 м, установленная в аллювиальных песках, выдерживает нагруз­ку до 22—25 т. При принимаемом коэффици­енте запаса 2,5—3,0 расчетная нагрузка на сваю в этом случае составит 10 т.

Применение корневидных свай имеет боль­шие возможности по сравнению с забивными как в отношении несущей способности, так и в проявлении значительно меньших динамичес­ких нагрузок на памятники архитектуры. Большое значение корневидных свай при при­менении их в практике реставрационных ра­бот заключается в возможности одновремен­ного усиления ими старых фундаментов, стен и оснований памятников

архитектуры.

Схема установки корневидных свай





Укрепление наземных конструкций



Укреплению наземных конструкций камен­ных зданий уделено уже достаточное внима­ние в специальной литературе, в том числе и по отношению к памятникам архитектуры. Современная строи­тельная техника способна в большинстве слу­чаев обеспечить дальнейшую сохранность разрушающейся кладки без ее разборки, и, следовательно, реставратор обязан всемерно избегать каких-либо разборок и перекладок древних частей, обеспечивая комплекс аутен­тичности реставрируемого памятника. Одним из наиболее эффективных средств укрепления разрушающейся кладки без ее разборки яв­ляется уже опробованная на многочисленных объектах  инъекция.

Работы по приданию кладке монолитности нагнетанием в ее трещины раствора могут выполняться при условии предварительного устранения причин, вызвавших трещины, ина­че кладка будет снова разорвана в другом месте. Растворы для инъекции кладок памят­ников архитектуры должны проникать в тон­кие трещины; проходить, не расслаиваясь, по шлангам и широким трещинам кладки, обла­дать после твердения необходимой механиче­ской прочностью и сцеплением с кладкой, при небольшой усадочности; приближаться по фи­зическим свойствам, т. е. коэффициенту тем­пературного расширения и паропроницаемо-сти, к укрепляемой кладке; сводить до мини­мума образование высолов на поверхности кладки и исключать вредное влияние раство­ра инъекции на стенопись. Приемы проведе­ния инъекционных работ не должны, по воз­можности, оставлять заметных следов на поверхности ее.

Можно отметить целесообразность приме­нения для инъекции шлакопортландцементов или портландцементов средних и низких ма­рок 200—300. Основное предпочтение следует отдать шлакопортландцементам, обладаю­щим более высокой водоудерживающей спо­собностью, меньшей вязкостью в разжижен­ных инъекционных растворах и дающим мень­ше выцветов на поверхности кладки. Расши­ряющиеся тампонажные цементы (ВРЦ и др.) для инъекционных растворов не могут быть рекомендованы1.

Наибольший эффект укрепления кладки инъекционным путем достигается при предва­рительном увлажнении примерно до 40—50% предельного насыщения. Можно ввести воды и меньше, имея в виду, что чем суше кладка, тем большую водоудерживающую способность должен иметь применяемый раствор.

Для улучшения качества растворов и при­ближения их физических свойств к свойствам древних кладок следует использовать добав­ки неорганических и органических пластифи­каторов и молотые минеральные вещества. Исследования показали, что малые дозы до­бавок поверхностно-активных веществ (ПАВ) значительно снижают степень вязкости инъек­ционных растворов. Наиболее эффективно вводить сульфитно-спиртовую барду (ССБ) 0,2—0,25% от веса вяжущего, особенно при укреплении сильно увлажненной кладки и на­личии тонких трещин (1,5—2 мм),  абиетат натрия (аб. н.) 0,02—0,03% с добавлением тонкомолотых минеральных веществ, преиму­щественно при средних и широких трещинах. «Поливинилацетатная эмульсия (50% ПВАЭ) в количестве 2—5% эффективна при укрепле­нии кладки, где недопустимо значительное ув­лажнение ее предварительной промывкой, а также нежелательна и в дальнейшем    постоянная влажность, снижающая прочность ра­створа с ПВАЭ. Обеспечивающие повышен­ную морозостойкость и снижающие появление высолов добавки мылонафта в количестве 0,2—0,3% следует применять для укрепления наружных деталей и фрагментов каменной кладки, находящихся в условиях резких ко­лебаний температур, например наружных ко­лонн, парапетов и др.

При нагнетании со значительным количеством во­ды эффекта расширения в таких цементах не происхо­дит. Но они с успехом могут использоваться для зачеканки полусухим раствором раскрытых швов в кладке сводов операции, часто сопутствующей инъекционным работам.


Вопрос долговечности укрепления инъек­ционными растворами каменной кладки па­мятников архитектуры тесно связан со сни­жением коэффициента температурного линей­ного расширения вводимых растворов. Этот коэффициент для кирпичной кладки на изве­стковом растворе колеблется в пределах 4,5—106 до 6-10-6 и для кирпича близок к величине 4,5—5-10-6. Чисто цементный ка­мень, в зависимости от водоцементного отно­шения, при котором он затвердел, имеет коэф­фициент температурного расширения около 18-10-6 при В/Ц =0,3 и снижается примерно до 10-10-6 при В/Ц=0,5. Поверхностно-ак­тивные добавки мало снижают коэффициент температурного расширения, сильнее влияют включения мелкомолотых веществ.

При инъекции трещин, проходящих парал­лельно наружной поверхности стен, серьез­ное значение будет иметь достаточная паропроницаемость затвердевшего инъекционного раствора, которая для старых известково-песчаных растворов сравнительно велика и достигает 1,6—1,8-10-2 г/м-ч-мм. Растворы цементно-песчаные имеют паропроницаемость не более 1,1-10-2 г/м-ч-мм, а жирные бес­песчаные еще меньшую.

Повысить паропроницаемость инъекцион­ных растворов можно с помощью шлакопортландцемента, а также введения поверхностно-активных веществ и тонкомолотых добавок. Минеральные добавки следует применять с вы­сокой тонкостью помола (через сито в 10 000 отв/см2). Молотый кирпич рекомендуется ис­пользовать при нагнетании в трещины массивной и особенно влажной кладки, а из­вестковую пыль — в сухих частях здания, особенно при более тонких конструк­циях.

Гипсовые растворы, легко разрушающиеся при увлажнении и имеющие высокий коэф­фициент температурного расширения, могут быть допущены с добавками 15—'20% тонко­молотой цемянки (тертого кирпича) и замед­лителей твердения лишь при укреплении сухих массивов, обладающих повышенным коэффи­циентом температурного расширения, напри­мер кладок из твердых разновидностей изве­стняка, песчаника и др. Глиняные растворы применимы лишь для заполнения пустот в кладке фундаментов, особенно    при влажных грунтах, но с обязательной добавкой во всех случаях не менее 15—20% цемента.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать