Химическое закрепление грунтов в сравнении с другими методами имеет ряд преимуществ: простоту производства работ; портативность применяемого оборудования; короткие сроки выполнения работ; долговечность закрепления; возможность закрепления грунта на любой глубине без проведения каких-либо специальных выработок и земляных работ; возможность проведения подземных работ без прекращения эксплуатации здания или сооружения. Приведенные случаи применения химического метода закрепления грунтов подтверждают эффективность и целесообразность использования этого метода в целях сохранения уникальных памятников архитектуры.
Усиление фундаментов и оснований с помощью корневидных свай
В связи с реконструкцией старых городов, их центральных районов и реализацией планов по подземной урбанизации часто возникает необходимость передачи в новых условиях нагрузок на большую глубину, тем самым обеспечивая сохранность зданий-памятников. Из-за плохого состояния многих памятников архитектуры исключается возможность обычного способа понижения уровня передачи нагрузки на грунт с помощью забивных свай, устанавливаемых посредством ударных и вибрационных механизмов. Нет возможности применять забивные сваи и тогда, когда нарушено устойчивое равновесие памятников в результате изменения гидрогеологического режима или изменения нагрузок, а также производства подземных работ вблизи памятников. При этом, однако, возможно использование корневидных свай.
Корневидные сваи представляют собой буровые сваи малого диаметра, заполненные цементным раствором под давлением, располагаемые практически под любыми углами к дневной поверхности и способные образовывать совместно с грунтом единую комплексную
структуру. В эту структуру могут быть вовлечены и конструктивные элементы памятника: фундаменты и стены. На рис. показана схема установки корневидных свай, одновременно усиливающих стены, фундаменты и основания. За счет давления при подаче раствора в скважину происходит некоторое увеличение диаметра сваи (до 30—50%), неравномерное по ее длине, вследствие чего существенно увеличивается сцепление материала сваи с грунтом.
Проходка ствола скважин осуществляется буровыми стайками вращательного (иногда пневмоударного) бурения. В качестве рабочего органа служат буровые коронки, армированные победитом, шарошечные или крестовые долота. Для бурения могут быть использованы высокопроизводительные дизельные станки и менее производительные, но малогабаритные станки с электроприводом, приспособленные для производства работ в подвалах высотой до 2 м и в стесненных условиях. При бурении в неустойчивых грунтах (супеси, пески) стенки скважин крепятся обсадными трубами соответствующих диаметров. В этих случаях обсадные трубы выполняют роль бурильных труб.
Бетонирование свай производится через нагнетающие трубы диаметром 18—60 мм в зависимости от диаметра скважин под давлением 3—6 атм. с одновременным, по мере заполнения скважины, подъемом обсадных труб. Нагнетающие трубы собираются на муфтах. Перед бетонированием в случае засорения скважины грунтом производится промывка водой. В отдельных случаях применяется опрессовка скважин воздухом, что позволяет создавать расширение свай (например, под укрепляемым фундаментом).
Диаметры корневидных свай применяются от 89 до 280 мм, длина свай может колебаться в пределах 7—40 м и определяется геологическими условиями, характером сооружения и величиной нагрузки. Сваи выполняются как с армированием, так и без армирования. При армировании свай используется одиночная арматура диаметром 12—16 мм. В отдельных случаях в скважинах оставляют обсадные трубы или трубы для подачи раствора, которые выполняют роль арматуры. Расстояние между сваями определяется в зависимости от нагрузки и несущей способности сваи. Минимальное расстояние между сваями в пределах 3—5 диаметров свай.
В проектах на основе имеющихся сведений о геологическом строении участка, определяется диаметр свай, их количество, нагрузка на сваю, которая определяется в результате статических испытаний. По результатам испытаний свая диаметром 100 мм (по обсадной трубе), длиной 7 м, установленная в аллювиальных песках, выдерживает нагрузку до 22—25 т. При принимаемом коэффициенте запаса 2,5—3,0 расчетная нагрузка на сваю в этом случае составит 10 т.
Применение корневидных свай имеет большие возможности по сравнению с забивными как в отношении несущей способности, так и в проявлении значительно меньших динамических нагрузок на памятники архитектуры. Большое значение корневидных свай при применении их в практике реставрационных работ заключается в возможности одновременного усиления ими старых фундаментов, стен и оснований памятников
архитектуры.
Схема установки корневидных свай |
Укрепление наземных конструкций
Укреплению наземных конструкций каменных зданий уделено уже достаточное внимание в специальной литературе, в том числе и по отношению к памятникам архитектуры. Современная строительная техника способна в большинстве случаев обеспечить дальнейшую сохранность разрушающейся кладки без ее разборки, и, следовательно, реставратор обязан всемерно избегать каких-либо разборок и перекладок древних частей, обеспечивая комплекс аутентичности реставрируемого памятника. Одним из наиболее эффективных средств укрепления разрушающейся кладки без ее разборки является уже опробованная на многочисленных объектах инъекция.
Работы по приданию кладке монолитности нагнетанием в ее трещины раствора могут выполняться при условии предварительного устранения причин, вызвавших трещины, иначе кладка будет снова разорвана в другом месте. Растворы для инъекции кладок памятников архитектуры должны проникать в тонкие трещины; проходить, не расслаиваясь, по шлангам и широким трещинам кладки, обладать после твердения необходимой механической прочностью и сцеплением с кладкой, при небольшой усадочности; приближаться по физическим свойствам, т. е. коэффициенту температурного расширения и паропроницаемо-сти, к укрепляемой кладке; сводить до минимума образование высолов на поверхности кладки и исключать вредное влияние раствора инъекции на стенопись. Приемы проведения инъекционных работ не должны, по возможности, оставлять заметных следов на поверхности ее.
Можно отметить целесообразность применения для инъекции шлакопортландцементов или портландцементов средних и низких марок 200—300. Основное предпочтение следует отдать шлакопортландцементам, обладающим более высокой водоудерживающей способностью, меньшей вязкостью в разжиженных инъекционных растворах и дающим меньше выцветов на поверхности кладки. Расширяющиеся тампонажные цементы (ВРЦ и др.) для инъекционных растворов не могут быть рекомендованы1.
Наибольший эффект укрепления кладки инъекционным путем достигается при предварительном увлажнении примерно до 40—50% предельного насыщения. Можно ввести воды и меньше, имея в виду, что чем суше кладка, тем большую водоудерживающую способность должен иметь применяемый раствор.
Для улучшения качества растворов и приближения их физических свойств к свойствам древних кладок следует использовать добавки неорганических и органических пластификаторов и молотые минеральные вещества. Исследования показали, что малые дозы добавок поверхностно-активных веществ (ПАВ) значительно снижают степень вязкости инъекционных растворов. Наиболее эффективно вводить сульфитно-спиртовую барду (ССБ) 0,2—0,25% от веса вяжущего, особенно при укреплении сильно увлажненной кладки и наличии тонких трещин (1,5—2 мм), абиетат натрия (аб. н.) 0,02—0,03% с добавлением тонкомолотых минеральных веществ, преимущественно при средних и широких трещинах. «Поливинилацетатная эмульсия (50% ПВАЭ) в количестве 2—5% эффективна при укреплении кладки, где недопустимо значительное увлажнение ее предварительной промывкой, а также нежелательна и в дальнейшем постоянная влажность, снижающая прочность раствора с ПВАЭ. Обеспечивающие повышенную морозостойкость и снижающие появление высолов добавки мылонафта в количестве 0,2—0,3% следует применять для укрепления наружных деталей и фрагментов каменной кладки, находящихся в условиях резких колебаний температур, например наружных колонн, парапетов и др.
При нагнетании со значительным количеством воды эффекта расширения в таких цементах не происходит. Но они с успехом могут использоваться для зачеканки полусухим раствором раскрытых швов в кладке сводов — операции, часто сопутствующей инъекционным работам.
Вопрос долговечности укрепления инъекционными растворами каменной кладки памятников архитектуры тесно связан со снижением коэффициента температурного линейного расширения вводимых растворов. Этот коэффициент для кирпичной кладки на известковом растворе колеблется в пределах 4,5—106 до 6-10-6 и для кирпича близок к величине 4,5—5-10-6. Чисто цементный камень, в зависимости от водоцементного отношения, при котором он затвердел, имеет коэффициент температурного расширения около 18-10-6 при В/Ц =0,3 и снижается примерно до 10-10-6 при В/Ц=0,5. Поверхностно-активные добавки мало снижают коэффициент температурного расширения, сильнее влияют включения мелкомолотых веществ.
При инъекции трещин, проходящих параллельно наружной поверхности стен, серьезное значение будет иметь достаточная паропроницаемость затвердевшего инъекционного раствора, которая для старых известково-песчаных растворов сравнительно велика и достигает 1,6—1,8-10-2 г/м-ч-мм. Растворы цементно-песчаные имеют паропроницаемость не более 1,1-10-2 г/м-ч-мм, а жирные беспесчаные еще меньшую.
Повысить паропроницаемость инъекционных растворов можно с помощью шлакопортландцемента, а также введения поверхностно-активных веществ и тонкомолотых добавок. Минеральные добавки следует применять с высокой тонкостью помола (через сито в 10 000 отв/см2). Молотый кирпич рекомендуется использовать при нагнетании в трещины массивной и особенно влажной кладки, а известковую пыль — в сухих частях здания, особенно при более тонких конструкциях.
Гипсовые растворы, легко разрушающиеся при увлажнении и имеющие высокий коэффициент температурного расширения, могут быть допущены с добавками 15—'20% тонкомолотой цемянки (тертого кирпича) и замедлителей твердения лишь при укреплении сухих массивов, обладающих повышенным коэффициентом температурного расширения, например кладок из твердых разновидностей известняка, песчаника и др. Глиняные растворы применимы лишь для заполнения пустот в кладке фундаментов, особенно при влажных грунтах, но с обязательной добавкой во всех случаях не менее 15—20% цемента.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10