Теоретические основы математических и инструментальных методов экономики

                                                       .                                                    (6.40)


Здесь  - квантиль распределения Стьюдента  уровня (1-) с  степенями свободы.

Для графической оценки корреляционной связи двух случайных переменных строят так называемые диаграммы рассеяния

 Коэффициент корреляции определяет тесноту линейной корреляционной связи между двумя случайными переменными x и y. Однако корреляционная связь между переменными не обязательно является линейной. Поставим задачу описания корреляционной связи в самом общем виде. Выясним меняется ли одна случайная величина (y) при изменении другой случайной величины (x). Рассмотрим плоскость (xy), на которой заданы эти величины. На оси x укажем k точек в интересующем нас диапазоне значений и для каждой j-й точки этого диапазона измерим q раз значение переменной y. В результате получаем k диапазонов (групп) для величины y, в каждом из которых имеется q отсчетов. Значения y внутри отдельной группы будем рассматривать как самостоятельную совокупность и для нее найдем внутригрупповую среднюю и внутригрупповую дисперсию соответственно:

                                                       .                                                    (6.41)

 (Отметим, что в пределах данного пункта используется формула для вычисления смещенной оценки дисперсии.)

Найдем среднюю арифметическую внутригрупповых дисперсий


                                          ,                                       (6.42)

 а также среднее значение по всей совокупности точек

                                                           .                                                        (6.43)

Запишем выражение для расчета межгрупповой дисперсии, описывающей рассеяние групповых средних относительно средней по всей совокупности точек

                                                      ,                                                  (6.44)

и выражение для расчета общей дисперсии, описывающей рассеяние отдельных точек относительно среднего по всей совокупности

                                                                                                    (6.45)

Если переменная y связана с x функциональной зависимостью, то определенному значению x соответствует определенное значение y  и в каждой группе содержатся q  одинаковых чисел. Это означает, что внутригрупповая дисперсия  равна нулю и на основание (6.51)

                                                            .                                                         (6.52)

 Если же переменные x и y связаны корреляционной зависимостью, то

                                                           .                                                         (6.53)

 На основание данного важного свойства соотношения межгрупповой и общей дисперсий вводится мера оценки тесноты корреляционной связи

                                                             .                                                         (6.54)

 Мера (6.54) называется выборочным корреляционным отношением и характеризует тесноту как линейной, так и нелинейной корреляционной связи между двумя случайными величинами. Очевидно, что

                                                                .                                                            (6.55)

 Поскольку наиболее общим видом связи двух переменных является полиномиальная связь, можно сказать, что корреляционное отношение оценивает тесноту связи вида

                                                                                                        (6.56)



Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать