,
где - численность промышленного персонала; - основные и оборотные фонды.
Модели без управления применяются для изучения фактически существующих процессов, без вмешательства в их течение. К моделям без управления принадлежат модели экономики страны, расширенного воспроизводства, прогнозирования рождаемости, численности населения и т.д. Как правило, они дают общее представление об объекте. Процессы в моделируемом объекте отображаются в агрегированном виде и максимально обобщены. Поэтому модели без управления не дают полного представления об объекте моделирования и пригодны для изучения только самых общих изменений и тенденций. Модели без управления позволяют изучать явления в целом, комплексно и устанавливают общие фундаментальные свойства объектов и процессов.
Оптимизационные модели. Их появление и применение вызвано необходимостью решения практических задач экономики и техники. Особенностью оптимизационных моделей является целенаправленность решения и явная оценка эффективности (качества) различных вариантов решения. В отличие от моделей без управления оптимизационные модели предполагают выявление цели управления и построение целевой функции.
Суть получения оптимального решения на модели заключается в выборе из множества возможных решений одного, обеспечивающего максимальную эффективность.
Задача об оптимальной перевозке грузов (транспортная задача). Пусть осуществляется производство некоторого товара в пунктах . Объем производства товара в каждом пункте равен соответственно . Товар необходимо доставить в магазины или потребителям, находящимся в других населенных пунктах: . Известна потребность каждого потребителя в товаре: . Задана также стоимость транспортировки товара из каждого пункта производства каждому потребителю . Требуется составить план завоза товара в магазины, обеспечивающий удовлетворение их спроса при минимальных транспортных издержках.
Транспортная задача
Пусть необходимо перевезти некоторые партии товара из трех складов четырем покупателям, при этом известен объем товара на каждом складе и требуемое количество для каждого покупателя, также в таблице указаны стоимости перевозки от каждого склада к каждому покупателю. Найти оптимальный по цене план перевозок.
14
28
21
28
27
10
17
15
24
20
14
30
25
21
43
33
13
27
17
Построение оптимального плана, методом северо-западного угла
14
27
28
21
28
27
10
6
17
13
15
1
24
20
14
30
25
26
21
17
43
33
13
27
17
Расчет потенциалов
если .
u v
0
7
5
1
-14
14
27
28
21
21
19
28
15
27
+
-10
10
6
17
13
15
1
24
11
20
+
-20
14
20
30
27
25
26
21
17
43
33
13
27
17
Полученную разность потенциалов можно трактовать как увеличение цены продукта при перевозке из пункта i в пункт j. По критерию оптимальности, если потенциалы в нулевых клетках меньше цен на перевозку, то план оптимален. Иначе план может быть улучшен.
За основу преобразования обычно берется клетка с максимальной разностью.
u v
0
13
11
7
+
-14
14
27
28
27
21
25
28
21
27
-4
10
4
17
13
15
6
24
11
20
+
-14
14
6
30
27
25
20
21
17
43
33
13
27
17
Данный план тоже не оптимален: клетка (1,3)
u v
0
9
7
7
+
-14
14
7
28
23
21
20
28
21
27
-8
10
8
17
13
15
7
24
15
20
+
-14
14
26
30
23
25
10
21
17
43
33
13
27
17
По данному плану вычисляется оптимальное (наименьшее) значение суммарных значений на перевозку:
F=14*7+21*20+17*13+15*7+14*26+21*17=1565
Задача о пользе услуг. Построим оптимизационную модель, у которой некоторые переменные могут принимать только целые значения. Она называется целочисленной задачей линейного программирования. Допустим, перед человеком стоит вопрос, какими видами бытовых услуг - - ему следует воспользоваться, чтобы максимально облегчить свой быт (сэкономить время). Предполагается, что сумма денег, которой он располагает равна d. Можно составить такой список:
Класс оптимизационных моделей очень широк. Приведенные выше задачи относятся к линейному программированию. Существуют также модели динамического программирования, в которых требуется отыскать не одно, а несколько решений, например, решения принимаемые в различные моменты времени; экстремальные модели, позволяющие найти экстремальное значение одного или нескольких параметров объекта; гомеостатические модели, предназначенные для удержания параметров объекта в определенных пределах при наличии каких-либо возмущающих воздействий, и т.д.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17