Из этой же таблицы также видно, что даже средние содержания Cu (0,34-0,37%) близки к кондиционным (0,35%-0,5%), поэтому учитывая неравномерность распределения меди в техногенных рудах (от 0,08 до 1,88%), очевидно, что они вполне конкурентоспособны с коренными рудами.
В медных рудах Урала помимо меди содержится ёще 15 других ценных компонент (Zn, Pb, S, Au, Ag, Bi, Cd, Ge, Re, Sn, Te, Ni, In, Sb). Кроме того, в шлаках содержится до 30% и более железа (CFe,кондиц.³16%), которое из них не извлекается.
Наибольшую ценность в хвостах обогащения Уральских руд представляет сера. Её стоимость составляет 30-50% от общей стоимости хвостов. Второе место принадлежит сумме драгоценных металлов (25-45%). Далее идут Cu – 10-20% и Zn – 10-15%.
Каждое ТМ обладает своими особенностями, обусловленными составом исходного сырья для них, технологией добычи, обогащения или переработки и целым рядом других факторов. Поэтому необходима объективная оценка и детальная разведка каждого перспективного для вторичной переработки ТМ. Оценочные работы проведены пока на немногих месторождениях. Рассмотрим для примера результаты таких работ на двух месторождениях: ТМ Бурибаевской обогатительной фабрики и ТМ медиплавильного комбината АООТ «СУМЗ» (Среднеуральский металлургический (медиплавильный) завод).
ТМ Бурибаевской обогатительной фабрики начало формироваться с 1937 г. Площадь хвостохранилища составляет около 18 га. Высота колеблется от 0,5 до 18 м. Хвосты представляют собой обезвоженную пульпу с размером частиц от 0,02 до 0,07 мм.
По результатам опробования шлама содержание СS=10-42%, СCu=0,12-1,64%, СZn£1%. Эти шламы могут быть использованы как сырьё для получения медного и пиритового концентратов.
Хвостохранилище разведано колонковыми скважинами по сети 50´50 м. Анализ размещения меди и серы в шламе хвостохранилища показал, что наибольшее их содержание отмечается в местах слива шлама из трубопровода. По мере удаления от него содержание меди и серы уменьшается. По содержанию этих элементов выделяют три участка:
I участок – СCu>0,5%, СS>34%.
II участок - СCu>0,5%, СS<34%.
III участок - СCu<0,5%, СS<34%
Запасы хвостохранилища составляют 3,96 млн.т при среднем содержании СCu=0,54%, СZn=0,17%, СS=28,18%. Кроме Cu, Zn и S хвосты содержат:
Au – 1,2 г/т (0,00012), Se – 41 г/т (0,0041%), Ge – 1,6 г/т (0,00016%,
Ag – 10,3 г/т (0.00103%), Te – 28 г/т (0,0028%).
Пользуясь этими данными нетрудно подсчитать запасы перечисленных выше металлов в хвостохранилище Бурибаевской обогатительной фабрики (сделать самостоятельно)
Cu – 21384 т, Au – 4,752 т, Te – 110,88 т,
Zn – 6732 т, Ag – 40,788 т, Ge – 6,33 т,
S – 1,116 млн.т, Se – 162,35 т.
ТМ медеплавильного комбината АООТ “СУМЗ” представляет собой шлакоотвал, содержащий несколько десятков млн.т шлаков.
Минеральный состав шлаков:
Магнетит (FeFe2O4), пирротин (Fe1-xS), фаялит {Fe2[SiO4]}, шпинель (MgAl2O4), виллемит {Zn2[SiO4]}, куприт (Cu2O), волластонит {Ca3[Si3O9]}, кварц (SiO2) и некоторые другие рудные и нерудные минералы.
В химическом составе преобладают
Fe – (34-42)%, SiO2 – (32-38)%, Al2O3 – (4,6-7,5)%,
Zn – (2-5)%, S – (0,9-1,2)%, Cu – (0,6-0,7)%.
В ходе отработки шлакоотвала, дробления и флотационного обогащения шлаков на обогатительной фабрике получают медно-цинковый концентрат и магнетит, содержащий песок.
3.4. ТМ черных металлов
ТМ этой группы, как и ТМ цветных и редких металлов формируются при добыче, обогащении и переработке продуктов обогащения коренных руд чёрных металлов (Fe, Ti, Mn, Cr). Они так же, как правило, относятся к месторождениям смешенного типа, т.е. пригодны для доизвлечения различных металлов и для получения стройматериалов.
Для месторождений Урала этой группы наблюдается аналогичное соотношение запасов для разных их типов:
· ТМ вскрышных и скальных пород и некондиционных руд - >5 000млн. т;
· ТМ хвостов обогащения - ~900 млн. т;
· ТМ шлаков металлургических комбинатов - ~200 млн. т.
Наибольший интерес среди ТМ чёрных металлов вызывают в последнее время хвосты мокрой магнитной сепарации титаномагнетитовых руд Качканарского ГОК’а (Урал). Хвостохранилище занимает площадь 2000´200 м=40 га. В среднем в него ежегодно поступает около 34 млн.т хвостов. Материал их достаточно однороден, с преобладающим фракционным составом 1-4 мм. Распределение металла по поверхности хвостохранилища равномерное. Как следствие однородности состава шламов в них отмечаются стабильные содержания одного из редких металлов–скандия (CSc»130 г/т), представляющего промышленный интерес.
ТМ металлургических предприятий представляют довольно сложные объекты. Строение подобных ТМ рассмотрим на примере ТМ Челябинского электрометаллургического комбината (АО «ЧЭМК»).
Шлаковые отвалы ЧЭМК формируются с начала ферросплавного производства в 1931г. и продолжают функционировать по настоящее время. Они имеют в плане близкую к изометрической форму плоского типа (соотношение площади верхней поверхности и нижнего основания меньше двух). Площадь отвала около 38 га. Мощность тела отвала 16-31 м, средняя её величина – 22,55 м. Плотность материала – 2,5 т/м3.
Вывалка шлаков и отходов различного состава производилась хаотически, без соблюдения системы складирования, поэтому строение отвала сложное. Большая часть его поверхности покрыта пылями различных производств и саморассыпающихся шлаков, которые впоследствии проходят процесс литификации (слёживания), превращаясь в сцементированные тонкообломочные породы.
В отвале содержится около 653 тыс.т марганца. Основное перспективное направление переработки – использование в качестве строительного материала с предварительным извлечением металлических фаз. Характерными стройматериалами, которые могут быть получены из шлаков чёрной металлургии, являются:
· гранулированные шлаки;
· шлаковая пемза как заполнитель бетона;
· шлаковата;
· литой шлаковый щебень;
· шлаковое литьё (брусчатка, плитки, бордюрный камень и пр.);
· стеклокерамические изделия;
· вяжущие добавки в цемент;
· минеральные добавки для улучшения почв.
4. Методика и техника геолого-экономической оценки ТМ
4.1. Основные этапы исследования ТМ
Исследования ТМ и вовлечение их в эксплуатацию представляет собой комплексную проблему, которая может быть решена только совместными усилиями геологов, геофизиков, горняков, обогатителей и экологов. Методика исследований ТМ включает ряд этапов:
1. Рекогносцировочное геолого-геофизическое обследование ТМ. Оно выполняется путём изучения горно-геологической документации отработки коренных месторождений, осмотра техногенных образований на местах и составления схемы их залегания. На основании выполнения этих работ оценивается:
· минералогический и петрофизический состав залежей ТМ и их физические свойства (плотность, электропроводность и т.д.);
· ожидаемое содержание полезных и попутных компонент;
· гранулометрический состав;
· площадь и мощность залежей ТМ, их состояние, сроки складирования и т.д.
Первый этап работ заканчивается заключением о целесообразности дальнейшего изучения ТМ с целью вовлечения его в переработку, если существует потребность в том или ином продукте, полученном из техногенного сырья.
При этом оценка ТМ должна быть технолого-эколого-экономической, так как экологический аспект их разработки, наряду с сырьевым, является важнейшим.
Совокупность таких заключений может служить основой для составления централизованной картотеки, кадастра или банка данных по ТМ России.
2. Геолого-геофизическая съёмка поверхности отложений ТМ. Информация о ТМ, полученная на первом этапе исследований, требует уточнения. Многие ТМ существуют от нескольких десятков до 100 и более лет. В течение этого времени интенсивно шли процессы выветривания, окисления и выщелачивания, в результате которых произошло перераспределение элементов, изменение минералогического и вещественного состава техногенных отложений, вынос элементов и образование ореолов рассеяния. Эти изменения наиболее существенны для отходов добычи и обогащения сульфидных руд, которые при окислении и выщелачивании быстро разрушаются и переходят в окисленные минералогические формы, требующие при утилизации создания особых технологий извлечения полезных компонент.
Основным средством исследования ТМ на втором этапе являются ядерногеофизические методы, такие как рентгенофлуоресцентный (РФМ), нейтронноактивационный (НАМ), гамма-гамма (ГГМ) и др., обеспечивающие геолого-технологическое картирование и выявление наиболее перспективных для разработки участков.
Второй этап исследований ТМ начинается рентгенорадиометрической съёмкой, когда это возможно, или отбором проб с поверхности отложений по разведочным линиям с максимальным расстоянием между ними для однородных отвалов 100 м, а между пунктами опробования по линии – 10-20 м. Отбор проб по поверхности рыхлых отложений проводится горстьевым способом или способом вычерпывания. Крупные глыбы шлаков, горных пород, некондиционных руд и других образований опробуются штуфным способом. Проба представляет собой образец (штуф) или сколки, отобранные равномерно с опробуемой поверхности. В случае неоднородности строения объекта исследований проводится опробование каждой разновидности.
Отобранные пробы подвергаются сначала полуколичественному спектральному анализу с целью выявления широкого круга элементов в исследуемом материале. Количественный анализ осуществляется рентгенорадиометрическим или нейтронно-активационным методом в зависимости от минимальных содержаний (Cmin) и типа (порядкового атомного номера Z) определяемых элементов, представляющих практический интерес. Для РФМ - Сmin³(10-3-10-2)%, Z>20; а для НАМ - Сmin³5·10-5%; Z – практически любой.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12