X1(Z) X2(Z) X3(Z)
2. Сдвиг.
· Другой метод обработки сигналов это метод преобразования ряда Фурье.
X(nT) – показывает комплексную функцию Х(еj), которая выглядит:
- прямое преобразование.
Спектр сигнала можно получить с помощью Z–преобразования если подставить:
Из свойства линейности Z–преобразования следует свойство линейности Фурье преобразования.
, то
Из свойства сдвига, мы можем написать следующим образом:
· Дискретное преобразование Фурье.
K= 0, … N-1 – прямое
n= 0, … N-1 – обратное
X(nT) = (n=0, … N-1)
X(K)последовательность из N частотных отсчетов, где
Эти преобразования можно представить в матричной форме:
X = WnX
Wn – окно расчета
- окно Хэминга
N
ДПФ и ОПФ – выполняются над конечной последовательностью из N – отсчетов и этот вид преобразования дает возможность определить спектральную плотность мощности сигнала, амплитуду и фазу отдельных частот.
S1 S1 = a1sin(wt)
S2 S2 = a2sin (w2t)
S3 S3 = a3sin (w3t)
Спектральная плотность сигнала
Е
w
F1 u F2 –несет смысл сообщения
F3 и т.д. – несет источник информации.
Свойства дискретного преобразования Фурье.
1) Линейность.
Имеются 2 сигнала х(к) у(к)
aх(nT) by(nT) тогда получается
ax(k)+by(k)=ax(nT)+by(nT)
2) Свойство сдвига.
Х(к) X(nT) – путем сдвига на n0 отсчетов, тогда дискретное
Y(nT) преобразование Фурье будет:
путем сдвига на n0k.
nT
X(nT)
nT
Тема: Случайные последовательности и их характеристики.
Любой сигнал который подвергается обработке в какой-то степени является случайным сигналом, который изменяется по времени и по частоте. Последовательность X(nT) является случайной, если каждый ее элемент является случайной величиной.
- помеха
X(nT) Y(nT)
Характеристики:
1) Математическое ожидание.
Х(nТ)
N-1 N
2) Дисперсия.
Дисперсия сигнала для непрерывной случайной величины определяется так:
0
95%
3) Авто корреляция.
Корреляция – связь между нынешним и предыдущим состоянием.
- среднее значение или математическое ожидание.
Авто корреляционная функция является мерой связей между случайными последовательностями. Если значение r(m)=0, то нет никакой связи межу случайными последовательностями.
4) Спектральная плотность или мощность стационарной случайной последовательности.
Спектральная плотность сигнала ----- есть средняя мощность последовательности ----- , приходящейся на достаточно узкую полосу частот.
Эта функция связана с преобразованием Фурье, и имеет следующий вид:
Тема: Виды окон анализа.
Проблемы:
1) Для того, чтобы обрабатывать сигнал в начале он превращается в дискретном виде (необходимо решить проблему точности при вставлении сигнала, как по частям, так и по уровню).
2) Выбор ширины окна анализа сигнала и типа окна анализа. Ширина окна берется исходя из периодичности сигнала. Если ширина окна близка или в точности совпадает с периодичностью сигнала, то это наиболее оптимальный способ выбора ширины окна.
Для речевых сигналов ширина окна должна быть равна периоду основного тона сигнала.
Т0
Тип окна - используются несколько типов:
а) прямоугольное окно.
Частотная характеристика этого окна выглядит так:
б) Окно Хэмминга.
Окно Хэмминга отличается от прямоугольного окна и описывается следующей формулой:
Достоинства:
1) Она сглаживает боковые вклады в результат обработки.
2) Ширина сдвига окна меньше ширины всего окна.
в) Окно Кайзера.
, где
I0 – функция Бегеля
- const
Тема: Расчеты цифровых фильтров.
Случайные сигналы можно исследовать:
2. В области частот.
Этот способ позволяет найти компоненты периодических сигналов, которые формируют или образуют случайные сигналы.
а) Преобразованием Фурье.
Сигналы можно разделить на 3 гармоники.
б) С помощью полосовых фильтров.
2. Во временной области.
Исследование его характеристики во времени.
3. С помощью линейного предсказания.
Это авто корреляционный способ. Он использует закономерность или информацию о том, как соседние отсчеты взаимосвязаны между собой.
Для того, чтобы исследовать сигналы в частотной области с помощью программ, которые моделируют цифровые фильтры, необходимо, заранее делать расчет цифровых фильтров.
Порядок расчета цифровых фильтров следующий:
1) Решается задача аппроксимации с целью определения коэффициента фильтра, при котором фильтр удовлетворяет заданному требованию.
2) Выбирается конкретная схема построения фильтра и квантования, найденных значений его коэффициентов в соответствии с фиксированной длиной слова.
3) Делается квантование переменных величин фильтра, т.е. выбор длины слова входных выходных и промежуточных переменных.
4) Проверяется методом моделирования, удовлетворяет ли полученный фильтр заданным требованиям. Если на этом этапе фильтр не удовлетворяет заданным требованиям, то предыдущие 2 и 3 этапы повторяются.
Бывают 2 типа фильтров:
а) Нерекуррентные.
б) Рекуррентные.
Формулы определения фильтров.
- рекуррентный фильтр
Другую характеристику цифрового фильтра можно записать следующим образом:
Схема фильтра будет следующая:
X(n) W(n) a0 Y(n)
Схема фильтра состоит из набора элементов задержек, выходной сигнал которых
умножается на определенный коэффициент.
Тема: Линейное предсказание сигналов.
Один из способов обработки сигналов является: использование модели линейного предсказания. Суть состоит в том, что следующий отчет сигнала является (вычисляется), используя предыдущие отчеты.
---- реальный дискретный сигнал.
---- моделирование дискретных сигналов.
С другой стороны:
- модель сигнала
Ошибка
Минимизируем функцию.
ak – коэффициент линейного предсказания.
Решая эту систему, находим коэффициент а
- Это Ковариационный метод.
- Авто корреляционный метод.
Модель такая: минимизируется ошибка следующим образом:
а – коэффициент линейного предсказания.
R – авто корреляционная матрица.
r – коэффициенты матрицы.
Эта модель сводится к модели фильтрации сигналов и будет:
S(Z) - Z–преобразование сигнала
A(Z) – фильтр (анализатор) сигнала
Любая модель линейного предсказания приводит к ошибкам предсказания. В случае, если мы используем авто корреляционный метод, тогда ошибка предсказания будет: