1. Для чего используются цифровые методы обработки сигналов при создании практических систем распознавания речи?
1) Для того, чтобы уменьшить объем обрабатываемой информации.
2) Для того, чтобы найти наиболее оптимальные признаки, которые описывают речевой сигнал.
3) Для того, чтобы увеличить скорость работы реальных или практических систем.
4) Для того, чтобы снимать шумовые ненужные сигналы из полезного сигнала.
5)Для того, чтобы сегментировать или маркировать речевой сигнал на фонетические элементы, которые соответствуют письменному тексту.
6) Для того, чтобы упростить аппаратуру передач и приема речевой информации.
В этих целях используют цифровые методы обработки сигналов.
2. Основные элементы акустической теории речеобразования.
Фант – шведский ученый разработал теорию, согласно которой они создали математическую модель речеобразования. Эта модель используется для того, чтобы создать искусственные системы синтеза речи и для того, чтобы понимать сам процесс речеобразования.
1. Классификация
X(t)
Ua
t
1) Аналоговые сигналы бывают двух типов:
· Стационарные (характеристики не меняются по времени).
· Не стационарные.
Для того, чтобы обрабатывать сигналы на ЭВМ аналоговые сигналы необходимо квантовать или дискретовать.
2) Дискретные сигналы.
Они описываются решетчатой функцией. Значение функции лежит в определенных пределах
Дискретные сигналы измеряются через определенный интервал времени Т, который над интервалом дискретизации.
Сигнал можно описать следующим образом:
X(t)
Ua
T 10t t
T = const
Если:
X(0) = 1
X(-1) = -2
X(2) = 5,
То дискретный сигнал можно представить в виде транспонированной матрицы.
X = [1, -2, 5]T
Дискретные сигналы могут быть:
- Вещественные.
- Комплексные.
веществен. Комплексн.
К дискретным - относятся сигналы, которые имеют амплитудно-импульсную модуляцию.
3) Цифровой сигнал.
Он описывается квантово-решетчатой функцией. Он принимает только дискретные значения h1…hk, в то время как независимая переменная и принимает значения
t
Каждый уровень кодируется кодом, состоящим из 2-х цифр, поэтому передача и обработка сигнала сводится к обработке двоичных чисел.
Если сигнал квантуется к-уровнями, тогда число разрядов, которых необходимо для кодирования каждого уровня сигналов равно:
- число разрядов, которые выделяются для
кодирования цифрового сигнала.
где
Ок – квантованный сигнал.
К цифровым сигналам относятся сигналы с импульсно-кодовой модуляцией.
Если S=5, тогда сигналы могут принимать следующие значения:
0 – «+» 1 – «-»
Причем 1-ый разряд слева – знаковый разряд.
16
14
12
10
8
6
4
2
Т 2Т
2. Связи между аналоговыми и дискретными сигналами.
При обработке сигнала на ЭВМ необходимо в максимальной степени, чтобы дискретный или цифровой сигнал содержал все признаки аналогового сигнала.
При дискретизации возможна потеря информации, которая приведет к тому, что результаты обработки не будут соответствовать.
Операция дискретизации сигнала состоит в том, чтобы по заданному сигналу Xa(t) строить дискретный сигнал ХД(nt), а именно их соответствия.
Операция восстановления аналогового сигнала состоит в том, чтобы по дискретному сигналу получит аналоговый ХД(nt) Xa(t).
Это все реально осуществимо, когда выполняются условия Кательникова:
Когда
Xa(t) – имеет ограниченный спектр.
угловая частота находится в определенных пределах, причем, для того, чтобы удовлетворить условиям Кательникова необходимо, чтобы: , где - частота дискретизации.
В таком случае аналоговый сигнал можно восстанавливать по дискретному сигналу.
Связь между спектром аналогового сигнала и спектром дискретного сигнала определяется следующей формулой:
аналоговая дискретная
3. Связь между дискретными и цифровыми сигналами.
Операция квантования и кодирования дискретного сигнала состоит в том, чтобы по заданному дискретному сигналу Х(nТ) строить цифровой сигнал.
ХД(nТ) Xц(nТ)
Объем информации зависит от частоты квантования, как по времени, так и по амплитуде.
Операция квантования сигнала по уровню и по частоте не является точно взаимно-обратной, потому что в процессе дискретизации аналогового сигнала происходят погрешности, которые, в принципе, нельзя исправить.
Если представить каждый отчет цифрового сигнала достаточным числом разрядов S, тогда погрешность можно свести к нулю.
4. Дискретная функция.
В области цифровой обработки сигналов используется специальный математический аппарат, который позволяет наиболее удобно представить аналоговый сигнал в цифровую форму и в дальнейшем его обработать. С этой целью и используется дискретная функция:
Н(А/В) – потеря информации в канале связи (величина).
2Н(А/В) – коэффициент сложности распознавания слова.
4. Методы классификации или распознавания слов, используемых в системах распознавания речи.
Существует несколько способов:
1) Эвристический или древовидный алгоритм.
Да Нет
|
|
Плохой тем, что бывают слова, когда энергия одинакова и в начале, и в конце слова, тогда алгоритм сводится к нулю.
2) Лингвистический подход (структурный).
Этот метод анализа используется следующим образом: На определенных сегментах проверяется не только наличие соответствующего сегмента, но и порядок следования этих сегментов.
T |
V |
П |
R |
C |
C |
T |
T V
3) Использование метода динамического программирования.
Это универсальный алгоритм, который используется практически везде.
Основан Беллманом.
Графически это выглядит следующим образом:
А(t)
слово
B(t)
Слово
Функция деформации основного времени.
Рассмотрим пример:
20 |
|
11 |
9 |
16 |
4 |
2 |
4 |
12 |
3 |
6 |
5 |
6 |
2 |
5 |
3 |
1 |
8 |
12 |
17 |
4 |
4 |
3 |
1 |
4 |
4 |
2 |
4 |
6 |
3 |
6 |
5 |
5 |
2 |
5 |
3 |
1 |
7 |
4 |
5 |
Н
И
Д
А
А
А
Д И Н