Моделирование распределения потенциала в МДП-структуре
Министерство общего и профессионального образования РФ
Воронежский государственный университет
факультет ПММ
кафедра Дифференциальных уравнении
Курсовая работа
“Моделирование распределения потенциала
в МДП-структуре”
Исполнитель : студент 4 курса 5 группы
Никулин Л.А.
Руководитель : старший преподаватель
Рыжков А.В.
Воронеж 1998г.
ОГЛАВЛЕНИЕ
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАСПРЕДЕЛЕНИЕ ПОТЕНЦИАЛА В МДП-СТРУКТУРЕ
Математическая модель - - - - - - - - - - - - - - - - - - - 3
ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКИХ МЕТОДОВ К
РЕШЕНИЮ ЗАДАЧИ
Использование разностных схем для решения
уравнения Пуассона и для граничных условий
раздела сред
Уравнение Пуассона - - - - - - - - - - - - - - - - - - - - - - 5
Граничные условия раздела сред - - - - - - - - - - - - - - - - - - - - - - 8
Общий алгоритм численого решения задачи
Метод установления - - - - - - - - - - - - - - - - - - - - - - 10
Метод переменных направлений - - - - - - - - - - - - - - - - - - - - - - 13
Построение разностных схем - - - - - - - - - - - - - - - - - - - - - - 16
ПРИЛОЖЕНИЕ - - - - - - - - - - - - - - - - - - -
ЛИТЕРАТУРА - - - - - - - - - - - - - - - - - - -
Математическая модель распределения потенциала в МДП-структуре
Математическая модель
Пусть j(x,y) - функция, описывающая распределение потенциала в полупроводниковой структуре. В области оксла (СDEF) она удовлетворяет уравнению Лапласа:
d2j + d2j = 0
dx2 dy2
а в области полупроводника (прямоугольник ABGH) - уравнению Пуассона:
d2j + d2j = 0
dx2 dy2
где
q - элементарный заряд e;
enn -диэлектрическая проницаемость кремния;
Nd(x,y) -распределение концентрации донорской примеси в подложке ;
Na(x,y) -распределение концентрации акцепторной примеси в подложке;
e0 -диэлектрическая постоянная
0 D E
y
B G
C F
A H
x
|
На контактах прибора задано условие Дирихле:
j| BC = Uu
j| DE = Uз
j| FG = Uc
j| AH = Un
На боковых сторонах полупроводниковой структуры требуется выполнение
однородного условия Неймана вытекающее из симметричности структуры
относительно линий лежащих на отрезках AB и GH:
dj = 0 dj = 0
dy AB dy GH
На боковых сторонах окисла так же задается однородное условие Неймана
означающее что в направлении оси OY отсутствует течение электрического
тока:
dj = 0 dj = 0
dy DC dy EF
На границе раздела структуры окисел- полупроводник ставится условие
сопряжения :
j| -0 = j| +0
eok Ex |-0 - enn Ex |+0 = - Qss
где Qss -плотность поверхностного заряда;
eok -диэлектрическая проницаемость окисла кремния;
enn -диэлектрическая проницаемость полупроводника .
Под символом “+0” и”-0” понимают что значение функции берется бесконечно близко к границе CF со стороны либо полупроводника либо окисла кремния . Здесь первое условие означает непрерывность потенциала при переходе границы раздела сред а второе - указывает соотношение связывающее величину разрыва вектора напряженности при переходе из одной среды в другую с величиной поверхностного заряда на границе раздела.
ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКИХ МЕТОДОВ К
РЕШЕНИЮ ЗАДАЧИ
Использование разностных схем для решения уравнения Пуассона и для граничных условий раздела сред
Уравнение Пуассона
В области {(x,y) : 0 < x < Lx , 0 < y < Ly } вводится сетка
W={(x,y) : 0 < i < M1 , 0 < j < M2}
x0 =0 , y0=0, xM1 = Lx , yM2 = Ly
xi+1 = xi + hi+1 , yj+1 = yj+ rj+1
i = 0,...,M1-1 j = 0,...,M2-1
Потоковые точки:
xi+ ½ = xi + hi+1 , i = 0,1,...,M1-1
2
yj+ ½ = yj + rj+1 , j = 0,1,...,M2-1
2
Обозначим :
U(xi,yj) = Uij
I(xi+½,yj) = Ii+½,j
I(xi,yj+½) = Ii,j+½
Проинтегрируем уравнение Пуассона:
Dj = - q (Nd + Na)
e0en
Q(x,y)
по области:
Vij = { (x,y) : xi- ½ < x < xi+ ½ , yj- ½ < y < yj+ ½ }
xi+ ½ yj+ ½ xi+ ½ yj+ ½
ò ò Dj dxdy = ò ò Q(x,y)dxdy
xi- ½ yj- ½ xi- ½ yj- ½
Отсюда:
yj+½ xi+½
ò(Ex(xi+½,y) - Ex(xi-½,y) )dx + ò(Ey(x,yj+½) - Ey(x,yj-½))dy=
yj-½ xi-½
xi+ ½ yj+ ½