Пушки Пирса с параллельным пучком

2. Общая схема системы формирования интенсивных электронных пучков.

 

Практически в любом случае систему, формирующую электронный пучок, можно, хотя и несколько условно, разделить на четыре основные (рис. 1) области:



Рис. 1. Общая схема системы фор­мирования электронных пучков.


         I  — область электронной пушки, состоящей из катода 1, фокусирующего электрода 2 и анода 3, в электрическом поле, которой, происходит первоначальное формирование пучка.

  II — область пролетного канала (пролетной трубы) 4, в котором могут располагаться резонаторы, например в случае клистрона, или отклоняющие устрой­ства, например в случае сварочной установки. В этой же области располагается в случае необходимости и так на­зываемая поперечно-ограничивающая, «фоку­сирующая» система 5. Конструкции таких систем доволь­но многообразны. В частности, она может представлять собой длинный соленоид. Ее назначение — создать маг­нитное или электрическое поле, препятствующее расши­рению электронного пучка в пролетной трубе.

В случае достаточно большой длины пучка это очень важно, что бы не допу­стить оседания значи­тельной части тока пуч­ка на стенках трубы, т. е. обеспечить хоро­шее токопрохождение. В частном случае (на­пример, отражатель­ные клистроны) этой системы может и не быть.

III — приемник или коллектор пучка 6, кото­рый может быть как «пассивным», т. е. служить подобно аноду в электронной лампе для отвода электронов пучка из прибора, так и «активным». В последнем случае ос­новной эффект, ради которого создается прибор и фор­мируется пучок, происходит именно на приемнике, на­пример плавка или сварка.

И, наконец, IV область — переходная между пуш­кой и поперечно-ограничивающей системой, поля в кото­рой должны быть такими, чтобы обеспечить согласован­ное действие I и II областей. Как правило, переходная область является важнейшей с точки зрения формиро­вания пучка, хотя, в случае если поле поперечно-ограни­чивающей («фокусирующей») системы простирается до катода пушки, этой области может и не быть.


2.1. Основные типы пучков

 

Конфигурация встречающихся на практике пучков может быть весьма разнообразной. Однако, хотя и не­сколько условно, можно из них выделить пучки наибо­лее типичной формы. В первую очередь это сплошные аксиально-симметричные пучки, поперечное сечение ко­торых имеет вид круга. Такие пучки могут быть как цилиндрическими (рис. 2-а), так и коническими, т. е. схо­дящимися (рис. 2-б).

Все больший интерес проявляется к трубчатым пуч­кам (цилиндрическим и коническим), поперечное сечение которых представляет собой кольцо (рис. 2-в, г).

Следует указать также на ленточные или плоские электронные пучки, сечение которых представляет собой прямоугольник, одна сторона которого значительно боль­ше другой. Такие пучки также могут быть параллельны­ми или сходящимися — клиновидными  (рис. 2-д,е).



Рис. 2. Основные типы пучков.



Ввиду наибольшей распространенности ак­сиально-симметричных пучков в дальнейшем рассмотрении им будет уделено основное внима­ние. Другие типы пучков рассматриваются менее подробно. Ко всем типам пучков могут быть предъ­явлены некоторые общие требования, а именно:

1.   Вполне определен­ный, часто возможно бо­лее высокий, микропервеанс, который в настоя­щее время достигает еди­ниц мка/в3/2. Это отра­жает стремление получить пучки с возможно большим током при пониженных напряжениях.

2.   Форма пучка должна, возможно лучше соответст­вовать заданной для того, чтобы его можно было про­пустить через пролетную трубу без потерь тока и часто так, чтобы границы

пучка были возможно ближе к ее стенкам.

При рассмотрении пучков мы будем, за исключением специально оговоренных разделов, предполагать:

Параксиальность траекторий электронов в пуч­ке.

Ламинарноcть пучков. Это значит, что траекто­рии отдельных электронов в пучке не пересекаются и пу­чок в целом имеет четкую границу, очерченную траекто­риями крайних электронов. Равномерность распределения плотно­сти  объемного заряда в    пучке.

Отсутствие начальных тепловых скоро­стей электронов на катоде.

Отсутствие релятивистских эффектов, в частности магнитных полей, создаваемых движущими­ся электронами.

Указанные предположения в той или иной степени на практике не реализуются. Однако, как показывает опыт, они весьма близки к действительности и существенно об­легчают рассмотрение основных характеристик пучков и систем их формирования.


2.2. Принцип построения пушек Пирса

 

Наибольшее распространение получили так называе­мые пушки Пирса, принцип построения которых заклю­чается в следующем.

Если рассмотреть диоды с идеаль­ной геометрией, а именно плоский, сферический или ци­линдрический (рис. 3), и выделить из всего электронно­го потока в них определенную часть требуемой конфигу­рации, как это показано на рисунке, то мы получим в зависимости от формы диода аксиально-симметричный или ленточный параллельный или сходящийся пучок.


Рис. 3. Выделение электронных пучков в диодах   простой   формы.



При этом влияние отброшенной части электронного потока на оставшуюся должно быть заменено эквива­лентным влиянием некоторого электрического поля, ко­торое, будучи созданным в пространстве, окружающем пучок, должно удовлетворять двум условиям:

1.  Распределение потенциала вдоль границы пучка должно остаться прежним, соответствующим распреде­лению поля в выбранном исходном диоде.

2.  Напряженность поля, нормальная к границе пучка, должна быть равна нулю, т. е. должны отсутствовать силы, приводящие к расширению пучка.

Определив поле, отвечающее этим требованиям, не­обходимо рассчитать или подобрать конфигурацию элек­тродов, из которых один имеет потенциал катода и по форме совпадает с пулевой эквипотенциалью поля, а дру­гой имеет потенциал анода и совпадает по форме с экви­потенциалью, соответствующей анодному напряжению Ua. Тогда указанная система электродов образует тре­буемый электронный пучок с прямолинейными траекто­риями.

Такого типа пушки и получили название пушек Пирса или однопотенциальных пушек, а принцип, положенный в их основу, иногда называют принципом прямолиней­ной оптики.


3. Пушки Пирса с параллельным пучком


Для безграничного плоского диода (рис.3-а) соот­ношение между плотностью тока, напряжением и рас­стоянием от катода z имеет вид :


      (3.1)

 

В плоскости анода при z = d, U = Ua, и, следовательно, распределение потенциала между электродами подчиня­ется выражению

     (3.2)

Таково должно быть, как указывалось, и распределе­ние потенциала вдоль границы пучка.

Поле, удовлетворяющее сформулированным выше условиям, может быть рассчитано или, что часто и де­лается, определено с помощью электролитической ванны.

Для этого берется мелкая горизонтальная (в случае пушки, формирующей ленточный пучок) или наклонная (в случае аксиально-симметричного пучка) электролитическая ванна, в которую помещаются модели электродов и пластинка из диэлектрика, имитирующая границу пуч­ка (рис. 4). Очевидно, что эта пластинка моделирует границу пучка, на которой нормальная к ней составляю­щая напряженности поля равна нулю, так как направле­ние тока в электролите у ее поверхности может быть только параллельным этой поверхности. Таким образом, второе условие выполняется автоматически. Выполнение первого условия, а именно соответствия распределения поля вдоль границы пучка выражению (3.2), можно до­биться подбором формы электродов.

Полученная при этом в ванне совокупность эквипотенциалей и будет представлять собой искомое поле, обеспечивающее формирование параллельного ленточно­го или аксиально-симметричного пучка. Картины полей для обоих случаев приведены на рис. 5. В обоих слу­чаях нулевая эквипотенциаль представляет собой поверх­ность, сечение которой плоскостью симметрии дает вбли­зи катода прямую, подходящую к границе пучка под углом 67,5°, а остальные эквипотенциали имеют более сложную форму и подходят к границе пучка под прямым углом.



Рис. 4. Электролитические ванны для моделирования электронных пучков

,

а—мелкая плоская ванна;

б — мелкая наклонная ванна;

1 — анод;

2 — фоку­сирующий электрод;

3 — диэлектрик.


Если теперь электродам пушки, имеющим потенциалы катода и анода, придать форму соответствующих эквипотенциалей, то созданное ими поле сформирует требуемый электронный пучок. На практике обычно не требуется изготавливать электроды, на всем протя­жении совпадающие с рассчитанной эквипотенциалью. Достаточно выдержать их форму вблизи границы пучка.

Если заданы напряжение Ua, ток пучка I, а также его поперечный размер на выходе из пушки, то тогда расчет пушки сводится к определению расстояния анод— катод d. Площадь катода легко определить по задан­ным размерам пучка, что позволяет оценить плотность тока на катоде j.

Далее из (3.1)

и искомое

(3.3)

Следует иметь в виду, что наличие отверстия в аноде пушки приводит, как можно видеть, к образованию ти­пичной рассеивающей линзы-диафрагмы (аксиально-сим­метричной или цилиндрической).

В первом случае ее фокусное расстояние равно:


   (3.4)

во втором:

   (3.5)

Полагая, что напряженность поля справа от анода Еb равна нулю, и находя Еа дифференцированием выра­жения (3.2), находим:


fa = -3d                    (3.4а)

fa = -1,5d                (3.5а)


Следовательно, рассматриваемые пушки будут давать на выходе, если не принимать дополнительных мер, рас­ходящиеся пучки с углами расхождения γ, определяю­щимися из выражений:

   (3.4б)

(для аксиально-симметричного пучка);

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать