Расчет распределения примесей в кремнии при кристаллизационной очистке и диффузионном легировании

 

 






Рисунок1 – Схема зонной плавки.


Большинство примесей обладает хорошей растворимостью в жидкой фазе по сравнению с твердой (равновесный коэффициент сегрегации k0<1), поэтому по мере продвижения зона плавления все больше насыщается примесями, которые скапливаются на конце слитка. Обычно процесс зонной плавки повторяют несколько раз, по окончании очистки загрязненный конец слитка отрезают. Для ускорения процесса очистки вдоль контейнера ставят несколько индукторов для образования ряда зон плавления. Для материалов с k0>1 очистка материалов зонной плавкой практически невозможна.

 Распределение примесей после одного прохода расплавленной зоной при зонной плавке вдоль слитка представляется  уравнением

         (1)

где Nтв – концентрация примеси в закристаллизовавшейся фазе на расстоянии x от начала слитка;

      – исходная концентрация примеси в очищаемом материале;

      x – текущая координата (расстояние от начала слитка);

      l  –  длина расплавленной зоны;

      ko – равновесный коэффициент распределения.

Если измерять длину слитка в длинах расплавленной зоны        a = x/l, выражение (1) следует записать иначе:

    (2)

Приведенные уравнения (1) и (2) , являющиеся математическим описанием процесса зонной плавки,  выведены при определенных  допущениях, сформулированных автором метода зонной очистки  В. Пфанном при выводе этих уравнений. Эти допущения в литературе принято называть пфанновскими, их суть в следующем:

1 Процессами диффузионного перераспределения компонентов системы в объеме слитка можно пренебречь, т.е. коэффициенты диффузии  компонентов в твердой фазе принимаются равными нулю ( Dтв = 0 ).

2 Диффузия компонентов системы в жидкой фазе совершенна - концентрация компонентов  постоянна по объему расплава в любой момент процесса;

3 Коэффициент распределения примеси – величина постоянная и не зависит от концентрации примеси в кристаллизующемся веществе (кривые солидус и ликвидус диаграммы состояния прямолинейны);

4  Начальная концентрация компонентов в исходном материале (слитке) одинакова по всем сечениям;

5 Геометрия подвергаемого зонной плавке слитка (длина и поперечное сечение) в ходе процесса остаются постоянными, плотности твердой и жидкой фаз равны (rтв=rж=r).

6  Расплав и твердая фаза при зонной плавке не взаимодействуют с окружающей средой - атмосферой и контейнером. Другими словами, в системе нет летучих и диссоциирующих компонентов, отсутствует поглощение примесей расплавом из атмосферы, материал контейнера не растворяется в жидкой фазе.

Уравнения (1) и (2)  справедливы только на участках слитка, на которых зона имеет две границы раздела фаз (постоянный объем). Когда в системе остается только кристаллизующаяся граница, распределение примеси представляется другим уравнением, соответствующим процессу нормальной направленной кристаллизации. Другими словами, если длина очищаемого слитка в длинах зон равна A= L/l, то уравнения (1) и (2) справедливы на длине a = (L - l)/l = A-1.

При a > A-1

 ,                                          (3)

где g - доля закристаллизовавшегося расплава последнего участка.

Только при проведении процесса при условиях, когда удовлетворяются все требования, приведенные выше, реальное распределение примеси в слитке после зонной плавки будет соответствовать закону, представленному выражениями (1) и (2).

Анализ показывает, что в большинстве реально протекаемых процессов зонной очистки полупроводниковых материалов пфанновские допущения не реализуются. Вместе с тем, вывод уравнений (1) и(2) без них был бы невозможен, а менее жесткие допущения приводят к существенному усложнению получаемых выражений.

Наиболее жесткими являются условия 2 и 3.

Допущение 2 в данной формулировке может выполняться только при бесконечно малых скоростях кристаллизации (скорости движения зоны). В этом случае сравнительно быстрая (по сравнению с диффузией в твердой фазе) диффузия в жидкой фазе в состоянии постоянно выравнивать концентрации компонентов системы в объеме расплавленной зоны.

Использовании выражений (1) и (2) для представления распределения примеси при реальных скоростях кристаллизации приводит к необходимости изменить формулировку допущения 2.  Выполнение условия постоянства концентрации компонентов по объему расплава возможно в данной ситуации только при реализации полного (идеального) перемешивания жидкой фазы. Предполагается, что в этом случае перераспределение компонентов и выравнивание состава в жидкой фазе происходит мгновенно - т. е. эффективный коэффициент диффузии  в жидкой фазе Dж = ¥ .

Условие полного перемешивания на практике реализовать невозможно. Процессы массопереноса в расплавленной зоне при реальных скоростях кристаллизации и разумной интенсивности перемешивании всегда приводят к образованию диффузионного слоя на  границе раздела фаз в области кристаллизации. Наличие слоя жидкости с концентрационным пиком, из которого и происходит кристаллизация,  влияние его на условия разделения компонентов учитывается введением в выражения (1) и (2) эффективного коэффициента распределения kэфф вместо равновесного ko.

Равновесный коэффициент сегрегации связан с эффективным соотношением Бартона-Прима-Слихтера:

                                                  (4)

где  Vкр - скорость перемещения расплавленной зоны (скорость кристаллизации);

         d    - толщина диффузионного слоя;

         -  коэффициент диффузии примеси в жидкой фазе.

Эта замена является лишь более или менее удачным приближением  к реальной ситуации, и не соответствует требованию условия постоянства концентрации.

Распределение примеси после зонной плавки для реальных процессов описывается выражением

                                (5)

Данное выражение позволяет анализировать влияние на сегрегационные процессы скорости перемещения зоны и условий перемешивания жидкой фазы.

Условие 3 справедливо только для сильно разбавленных растворов, т.е. при малых концентрациях примеси в системе. Кроме того, условие малости концентрации должно соблюдаться на протяжении всего процесса зонной плавки. Для того, чтобы  допущение 3 оказалось состоятельным, требуется использовать при кристаллизационной очистке исходные материалы прошедшие предварительную очистку.


1.2 Расчет распределения примеси вдоль слитка кремния после зонной плавки (один проход расплавленной зоной)

1.2.1 Расчет распределения Si-Ga.

Рассчитаем распределение галия в слитке кремния для трех скоростей перемещения зоны Vкр =1,5 ; 5 и 15 мм/мин.N0=0.02% (массовых). Длина зоны l составляет 10% от длины слитка L. Испарением примеси при переплавке пренебречь.

Распределение сурьмы вдоль слитка определяется уравнением (5) на длине слитка  a = (L - l)/l = A-1, т.е. при 0 £ a £ 9.

При a > 9 распределение примеси представляется уравнением (3). Доля закристаллизовавшегося расплава g на этом участке изменяется от нуля до величины, близкой к единице. Для g = 1 уравнение (3) не имеет смысла.

Прежде чем приступить к расчету переведем N0 из % (массовых) в % (атомные), а затем в см-3. Для этого воспользуемся формулой перевода.

                                           (6)

где А1, А2­­–атомные массы компонентов;

     N2–второй компонент смеси.

Атомная масса–для галлия = 69,72 [3]

 –для кремния = 28,08 [3]

Концентрация собственных атомов в кристаллической решетке кремния Nсоб=5×1022 см-3. Следовательно, исходная концентрация галлия в слитке: N0=8,06×10-5×5×1022=4,03×1018 см-3

Для расчета эффективного коэффициента сегрегации воспользуемся выражением (4). Для галлия в кремнии k0=8×10-3 [1]. Отношение d/Dж=200 с/см из задания.

Подставляя значения k0, d/Dж, Vкр в (4), вычислим kэфф. Для этого Vкр переведем из мм/мин в см/с, получим Vкр=2,5×10-3; 8,33×10-3; 2,5×10-2 см/с. Соответственно получим kэфф=1,3×10-2; 4,09×10-2; 0,545

· Заполняем расчетную таблицу, меняя с выбранным шагом расстояние от начала слитка в длинах зоны a (на участке зонной плавки). Последний участок слитка, на котором примесь распределяется в соответствии с уравнением (3), разбиваем, меняя расстояние от начала этого участка, пропорционально доле закристаллизовавшегося расплава g.

· Полученные результаты используются для построения графика распределения примеси Nтв вдоль слитка. При построении профиля, как правило, используют полулогарифмический масштаб, т.к. значения концентрации изменяются практически на три порядка.

·  Определить распределение удельного сопротивления вдоль слитка можно либо расчетным методом, либо по кривым Ирвина.

Таблица 1 -  Распределение галлия и удельного сопротивления вдоль слитка кремния после зонной плавки (один проход расплавленной зоной).

Участок  зонной

 плавки

 

Участок   направленной

кристаллизации

 

 

а

Nтв,

см-3

r , Ом×см

(по кривым Ирвина)

g

(a=10)

Nтв,

см-3

r , Ом×см

(по кривым Ирвина)

Vкр=2,5×10-3 см/с

0

5,24 1016

0,42

0

4,92 1017

0,098

1

1,04 1017

Страницы: 1, 2, 3, 4, 5, 6, 7



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать