дБ
Рис.1.4. Зависимость потерь из-за несогласованности поляризации передающей и приёмной антенн от эллиптичности поляризации
Эффект Фарадея заключается в повороте плоскости поляризации радиоволн под действием магнитного поля Земли и оказывает наибольшее влияние на сигналы с линейной поляризацией. Так как в данной работе используется круговая поляризация, значением этой составляющей потерь можно пренебречь.
Потери из-за деполяризации радиоволн в осадках обусловлены несферичностью формы и особенностью траекторий падения дождя. Этот вид потерь носит статистический характер, связанный со статистикой выпадения дождей. Значение этих потерь можно вообще не учитывать.
Таким образом поляризационные потери равны:
дБ
Тогда суммарные дополнительные потери энергии ЭМВ составят:
дБ или
раз.
Плотность энергии ЭМВ у поверхности Земли составит:
или
1.2.2. Определение мощности радиосигнала на входе приёмного тракта
Мощность сигнала на входе приёмного тракта (выходе антенны) составляет:
(1.1)
где – эффективная площадь приёмной антенны, м2 ;
– геометрическая площадь раскрыва антенны, м2;
– коэффициент использования поверхности. Обычно = 0,5…0,75. Зададим =0,7.
Геометрическая площадь раскрыва антенны диаметром м составит:
; м2
Эффективная площадь приёмной антенны земной станции будет равна:
м2
Таким образом, мощность сигнала на входе приёмного тракта составит:
пВт или дБВт.
Поскольку между выходом антенны и входом приёмника включены диплексер, циркулятор и полосовой фильтр, вносящие потери 1–1,2 дБ, то уровень сигнала на входе приёмника составит:
дБВт
1.2.3. Определение мощности шума на входе приёмника и коэффициента шума приёмника
Мощность шума на входе приёмного тракта земной станции равна:
где – постоянная Больцмана, ;
– полная эквивалентная шумовая температура приёмного тракта, приведённая ко входу облучателя, К ;
– эквивалентная шумовая полоса приёмника, Гц ;
–коэффициент, определяемый избирательными свойствами приёмника; обычно =1,1…1,2. Зададим =1,15.
Определим значение мощности шума на входе приёмного тракта исходя из отношения сигнал/шум на его входе. В качестве передаваемого ИЗС радиосигнала наиболее часто используются радиосигналы частотной модуляции (ЧМ). Так, для приёма сигнала с ЧМ необходимое отношение составляет 10…12 дБ во избежание порога помехоустойчивости ЧМ – явлении, заключающегося в непропорционально быстром увели-чении шумов на выходе приёмника при увеличении шумов на входе .
Зададим =10 дБ. Тогда:
Вт или дБВт
Соответственно мощность шума на входе приёмника составит:
дБВт
Полная эквивалентная шумовая температура приёмной системы составит:
К
Коэффициент шума приёмной системы будет равен:
или дБ
Определим эквивалентную шумовую температуру приёмника.
Полная эквивалентная шумовая температура приёмной системы, состоящей из антенны, диплексера, циркулятора, полосового фильтра и собственно приёмника, приведённая ко входу облучателя равна:
(1.1)
где TА – эквивалентная шумовая температура антенны, К ;
T0 – абсолютная температура среды (290 К);
– общие потери, вносимые в приёмный тракт диплексером, циркулятором и полосовым фильтром: дБ или .
Тпр – эквивалентная шумовая температура приёмника, обусловленная его внутренними шумами. Предполагая, что для проектируемой системы приёмный тракт должен быть как можно проще, выберем в качестве входного устройства приёмника транзисторный малошумящий усилитель (МШУ) и смеситель.
где – эквивалентная шумовая температура МШУ, К;
– эквивалентная шумовая температура смесителя, К. Обычно смеситель имеет шумовую температуру порядка К;
– коэффициент шума смесителя. Как будет показано в п. 3.2, для балансного смесителя дБ или ;
– коэффициент усиления МШУ. Как будет показано в п. 3.4, дБ или =3162
Эквивалентная шумовая температура антенны земной станции может быть представлена в виде составляющих, которые обусловлены различными факторами:
где (γ) указывает, что величина данной составляющей зависит от угла места антенны земной станции;
– температура, обусловленная приёмом космического радиоизлучения. Основу этой
температуры составляют радиоизлучения Галактики и точечных радиоисточников (Солнца, Луны, планет и некоторых звёзд). Так как излучение Галактики имеет сплошной спектр и слабо поляризовано, при приёме его на антенну с любым видом поляризации можно считать, что принимаемое излучение будет половинной интенсивности, т.е. величину следует брать с коеффициентом 0,5. Радиоизлучение Солнца является самым мощным источником, который может полностью нарушить связь, попав в главный лепесток диаграммы направленности антенны. Однако вероятность такого попадания мала: для геостационарных орбит она составляет примерно в зависимости от долготы ИСЗ. Поэтому радиоизлучение Солнца не учитываем.
Другой радиоисточник – Луна – практически не может нарушить связь, так как её эквивалентная температура не более 200 К. Этот источник тоже не будем учитывать. Остальные радиоисточники (планеты и радиозвёзды) имеют существенно меньшую температуру шума, вероятность встречи антенны с этими источниками ещё меньше, чем с Солнцем, так как их угловые размеры малы.
Используя график на рис. 1.5 для значений угла места и частоты ГГц с учётом излучения спокойной атмосферы получим:
К
Рис. 1.5. Частотная зависимость шумовой температуры Галактики, Солнца и атмос- феры (без дождя) |
Рис. 1.6. Частотная зависимость шумовой температуры атмосферы (с учётом дождя) |
– температура, обусловленная излучением атмосферы с учётом дождя. Это вид излучения имеет тепловой характер и в полной мере обусловлено поглощением сигналов в атмосфере (с учётом дождя).
Для наиболее вероятного значения времени выпадения дождей при и ГГц из графиков на рис.1.6 получим:
К
- температура, обусловленная приёмом излучения земной поверхности через боковые лепестки диаграммы направленности антенны. Для антенны земной станции, расположенной на суше обычно принимают , т.е:
К
– коэффициент, учитывающий уровень энергии, попадающей в антенну через боковые лепестки. Выберем с = 0,2.
Тогда эквивалентная шумовая температура антенны составит:
К
Эквивалентная шумовая температура приёмника исходя из выражения (1.1) будет равна:
K
Эквивалентная шумовая температура МШУ:
К
Коэффициент шума приёмника составит:
или =1,46 дБ
1.2.4. Определение реальной и пороговой чувствительности приёмника
Реальная чувствительность приёмника оценивается минимальной ЭДС (или мощ-ностью ) сигнала на входе приёмника, при которой сигнал на выходе приёмника достигает требуемого значения при заданном отношении сигнал/шум на его выходе.
Значение реальной чуствительности при стандартной температуре =290 К оценивается следующими выражениями:
, В
, Вт
где – соотношение сигнал/шум на выходе приёмника. Для сигналов ЧМ =2…4. Выберем = 2;
= 50 Ом – сопротивление антенны, согласованной с антенно-фидерным трактом с волно-вым сопротивлением 50 Ом.
В = 13,6 мкВ
Вт = 0,9 пВт или дБВт
Под предельной чувствительностью понимается уровень сигнала на входе приёмника при равных уровнях сигнала и шума на выходе линейной части приёмника, т.е при отношении сигнал/шум на выходе приёмника равном 1.
Вт или дБВт
Таким образом можно сделать следующий вывод:
Так как уровень сигнала на входе приёмника составляет дБВт, а реальная чувствительность приёмника, при которой обеспечивается заданное отношение сигнал/шум на выходе его выходе дБВт, можно сказать, что будет обеспечено требуемое качество обработки сигнала ЧМ в демодуляторе.
2. Разработка структурной схемы СВЧ тракта приёмника
2.1. Общие положения
Общий тракт приёма (ОТП) приёмного устройства предназначен для переноса прини-маемого сигнала без нарушения его структуры из области частот, используемой для радиосвязи, в область относительно низких частот, в которой его обработка оказывается наиболее эффективной. ОТП образуют тракт радиочастоты (ТРЧ) и тракты промежуточной частоты (ТПЧ) приёмного устройства.
Под СВЧ трактом приёма понимается совокупность оборудования, обеспечивающего приём СВЧ сигнала, его предварительное усиление и преобразование. В состав приёмного оборудования ОТП входит:
- антенно-фидерный тракт (волноводный, коаксиальный);
- малошумящий усилитель;
- смеситель;
- СВЧ гетеродин;
- СВЧ полосно-пропускающие фильтры.
Антенно-фидерный тракт – предназначен для передачи принятого облучателем антенны СВЧ сигнала в приёмник.
Малошумящий усилитель – устройство, выполняющее функцию предварительного усиления СВЧ сигнала до определённого уровня, обеспечивающего дальнейшую обработку этого сигнала.
Смеситель – устройство, обеспечивающее преобразование СВЧ сигнала в более низкочастотный сигнал.
СВЧ гетеродин – устройство, выполняющее функцию формирования СВЧ высокоста-бильных колебаний, которые используются смесителем для преобразования СВЧ информационного сигнала.
СВЧ ППФ – устройства, предназначенные для выделения диапазона принимаемых СВЧ сигналов.
2.2. Сравнительный анализ структурных схем СВЧ трактов
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10