СВЧ тракт приёма земной станции спутниковой системы связи

дБ

Рис.1.4. Зависимость потерь из-за несогласованности поляризации передающей и приёмной антенн от эллиптичности поляризации


Эффект Фарадея заключается в повороте плоскости поляризации радиоволн под действием магнитного поля Земли и оказывает наибольшее влияние на сигналы с линейной поляризацией. Так как в данной работе используется круговая поляризация, значением этой составляющей потерь можно пренебречь.

Потери из-за деполяризации радиоволн в  осадках обусловлены несферичностью формы и особенностью траекторий падения дождя. Этот вид потерь носит статистический характер,  связанный со статистикой выпадения дождей. Значение этих потерь можно вообще не учитывать.

Таким образом поляризационные потери равны:

дБ

Тогда суммарные дополнительные потери энергии ЭМВ составят:

дБ или

раз.


Плотность энергии ЭМВ у поверхности Земли составит:

 или

 

1.2.2. Определение мощности радиосигнала на входе приёмного тракта


Мощность сигнала на входе приёмного тракта (выходе антенны) составляет:

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        (1.1)

где    – эффективная площадь приёмной антенны, м2 ;

– геометрическая площадь раскрыва антенны, м2;

– коэффициент использования поверхности. Обычно = 0,5…0,75. Зададим =0,7.

Геометрическая площадь раскрыва антенны диаметром  м составит:

;   м2

Эффективная площадь приёмной антенны земной станции будет равна:

 м2

Таким образом, мощность сигнала на входе приёмного тракта составит:

 пВт или  дБВт.

Поскольку между выходом антенны и входом приёмника включены диплексер, циркулятор и полосовой фильтр, вносящие потери 1–1,2 дБ, то уровень сигнала на входе приёмника составит:

дБВт

1.2.3. Определение мощности шума на входе приёмника и коэффициента шума приёмника

 

Мощность шума на входе приёмного тракта земной станции равна:

где    – постоянная Больцмана, ;

– полная эквивалентная шумовая температура приёмного тракта, приведённая ко входу облучателя, К ;

– эквивалентная шумовая полоса приёмника, Гц ;

–коэффициент, определяемый избирательными свойствами приёмника; обычно =1,1…1,2. Зададим =1,15.

Определим значение мощности шума на входе приёмного тракта исходя из отношения сигнал/шум на его входе. В качестве передаваемого ИЗС радиосигнала наиболее часто используются радиосигналы частотной модуляции (ЧМ). Так, для приёма сигнала с ЧМ необходимое отношение  составляет 10…12 дБ во избежание порога помехоустойчивости ЧМ – явлении, заключающегося в непропорционально быстром увели-чении шумов на выходе приёмника при увеличении шумов на входе .

Зададим =10 дБ. Тогда:

 Вт или дБВт

Соответственно мощность шума на входе приёмника составит:

дБВт

Полная эквивалентная шумовая температура приёмной системы составит:

К

Коэффициент шума приёмной системы будет равен:

 или дБ

Определим эквивалентную шумовую температуру приёмника.

Полная эквивалентная шумовая температура приёмной системы, состоящей из антенны,  диплексера, циркулятора, полосового фильтра и собственно приёмника, приведённая ко входу  облучателя равна:

                                                                                                  (1.1)          

где    TА – эквивалентная шумовая температура антенны, К ;

T0 – абсолютная температура среды (290 К);

– общие потери, вносимые в приёмный тракт диплексером, циркулятором и полосовым фильтром: дБ или .

Тпр – эквивалентная шумовая температура приёмника, обусловленная его внутренними шумами. Предполагая, что для проектируемой системы приёмный тракт должен быть как можно проще, выберем в качестве входного устройства приёмника транзисторный малошумящий усилитель (МШУ) и смеситель.


где – эквивалентная шумовая температура МШУ, К;

      – эквивалентная шумовая температура смесителя, К. Обычно смеситель имеет шумовую температуру порядка К;

– коэффициент шума смесителя. Как будет показано в п. 3.2, для балансного смесителя дБ или ;

– коэффициент усиления МШУ. Как будет показано в п. 3.4, дБ или =3162

Эквивалентная шумовая температура антенны земной станции может быть представлена в виде составляющих, которые обусловлены различными факторами:

где (γ) указывает, что величина данной составляющей зависит от угла места антенны земной станции;

 – температура, обусловленная приёмом космического радиоизлучения. Основу этой

 температуры составляют радиоизлучения Галактики и точечных радиоисточников (Солнца, Луны, планет и некоторых звёзд). Так как излучение Галактики имеет сплошной спектр и слабо поляризовано, при приёме его на антенну с любым видом поляризации можно считать, что принимаемое излучение будет половинной интенсивности, т.е. величину  следует брать с коеффициентом 0,5. Радиоизлучение Солнца является самым мощным источником, который может полностью нарушить связь, попав в главный лепесток диаграммы направленности антенны. Однако вероятность такого попадания мала: для геостационарных орбит она составляет примерно в зависимости от долготы ИСЗ. Поэтому радиоизлучение Солнца не учитываем.

Другой радиоисточник – Луна – практически не может нарушить связь, так как её эквивалентная температура не более 200 К. Этот источник тоже не будем учитывать. Остальные радиоисточники (планеты и радиозвёзды) имеют существенно меньшую температуру шума, вероятность встречи антенны с этими источниками ещё меньше, чем с Солнцем, так как их угловые размеры малы.

Используя график на рис. 1.5 для значений угла места  и частоты ГГц с учётом излучения спокойной атмосферы получим:

К


             Рис. 1.5. Частотная зависимость шумовой

            температуры Галактики, Солнца и атмос-

               феры (без дождя)

           Рис. 1.6. Частотная зависимость

           шумовой температуры атмосферы

           (с учётом дождя)


– температура, обусловленная излучением атмосферы с учётом дождя. Это вид излучения имеет тепловой характер и в полной мере обусловлено поглощением сигналов в атмосфере (с учётом дождя).

Для наиболее вероятного  значения времени выпадения дождей  при  и      ГГц  из графиков  на рис.1.6 получим:

 К

- температура, обусловленная приёмом излучения земной поверхности через боковые лепестки диаграммы направленности антенны. Для антенны земной станции, расположенной на суше обычно принимают , т.е:

 К

 – коэффициент, учитывающий  уровень энергии, попадающей в антенну через боковые лепестки. Выберем с = 0,2.

Тогда эквивалентная шумовая температура антенны составит:

К

Эквивалентная шумовая температура приёмника исходя из выражения (1.1) будет равна:

K

Эквивалентная шумовая температура МШУ:

К

Коэффициент шума приёмника составит:

 или =1,46 дБ


1.2.4. Определение реальной и пороговой чувствительности приёмника


Реальная чувствительность приёмника оценивается минимальной ЭДС (или мощ-ностью ) сигнала на входе приёмника, при которой сигнал на выходе приёмника достигает требуемого значения  при заданном отношении сигнал/шум на его выходе.

Значение реальной чуствительности при стандартной температуре =290 К  оценивается следующими выражениями:

, В

, Вт

где – соотношение сигнал/шум на выходе приёмника. Для сигналов ЧМ =2…4. Выберем = 2;

 = 50 Ом – сопротивление антенны, согласованной с антенно-фидерным трактом с волно-вым сопротивлением 50 Ом.

В = 13,6 мкВ

Вт = 0,9 пВт или дБВт

Под предельной чувствительностью понимается уровень сигнала на входе приёмника при равных уровнях сигнала и шума на выходе линейной части приёмника, т.е при отношении сигнал/шум на выходе приёмника равном 1.

Вт или дБВт

Таким образом можно сделать следующий вывод:

Так как уровень сигнала на входе приёмника составляет дБВт, а реальная чувствительность приёмника, при которой обеспечивается заданное отношение сигнал/шум на выходе его выходе дБВт, можно сказать, что будет обеспечено требуемое качество обработки сигнала ЧМ в демодуляторе.

 

2. Разработка структурной схемы СВЧ  тракта приёмника

 

2.1. Общие положения

 

Общий тракт приёма (ОТП) приёмного устройства предназначен для переноса прини-маемого сигнала без нарушения его структуры из области частот, используемой для радиосвязи, в область относительно низких частот, в которой его обработка оказывается наиболее эффективной. ОТП образуют тракт радиочастоты (ТРЧ) и тракты промежуточной частоты (ТПЧ) приёмного устройства.

Под СВЧ трактом приёма понимается совокупность оборудования, обеспечивающего приём СВЧ сигнала, его предварительное усиление и преобразование. В состав приёмного оборудования ОТП входит:

- антенно-фидерный тракт (волноводный, коаксиальный);

- малошумящий усилитель;

- смеситель;

- СВЧ гетеродин;

- СВЧ полосно-пропускающие фильтры.

Антенно-фидерный тракт – предназначен для передачи принятого облучателем антенны СВЧ сигнала в приёмник.

Малошумящий усилитель – устройство, выполняющее функцию предварительного усиления СВЧ сигнала до определённого уровня, обеспечивающего дальнейшую обработку этого сигнала.

Смеситель – устройство, обеспечивающее преобразование СВЧ сигнала в более низкочастотный сигнал.

СВЧ гетеродин – устройство, выполняющее функцию формирования СВЧ высокоста-бильных колебаний, которые используются смесителем для преобразования СВЧ информационного сигнала.

СВЧ ППФ – устройства, предназначенные для выделения диапазона принимаемых СВЧ сигналов.

 

2.2. Сравнительный анализ структурных схем СВЧ  трактов

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать