СВЧ тракт приёма земной станции спутниковой системы связи

В каскадах на ПТШ для регулировки усиления используют зависимость крутизны стоко-затворной характеристики от напряжения на затворе.

Регулировка усиления каскада на ПТШ может быть обратной и прямой. При обратной регулировке, когда транзистор запирается с целью уменьшения усиления, для получения большей чувствительности регулировки необходимо, чтобы сопротивление нагрузки каскада было много меньше внутреннего сопротивления транзистора, а сопротивление источника сигнала было много меньше входного сопротивления каскада.

Наиболее часто используют прямую регулировку усиления. В каскадах на  ПТШ  она  осу-

ществляется путём изменения напряжения смещения на затворе, что приводит к изменению то-ка транзистора, а следовательно и коэффициента усиления каскада.

 

3.4 Распределение усиления по трактам приёмника

 

Расчёт коэффициентов передачи трактов приёмника произведём по методике, изложенной

в работе [10] исходя из реальной чувствительности приёмника мкВ и допустимых амплитуд на входах:

- первого смесителя ;

- второго смесителя ;

- демодулятора  (для частотного и фазового).

Мощность сигнала на входе демодулятора (выходе приёмника) составит:

Вт = 20 мВт или дБВт

Требуемый коэффициент усиления приёмного тракта составит:

дБ

Коэффициент усиления приёмного тракта  определяется как сумма усилений и затуханий, вносимых его каскадами. Для структурной схемы тракта, приведенной на рис.2.5:

                                                           (3.1)

где  – коэффициент усиления МШУ;

 – коэффициенты усиления УПЧ1 и УПЧ2 соответственно;

 – потери преобразования в первом и во втором смесителе. Для балансного

 смесителя .

Примем мкВ, мВ, В.

Для обеспечения величины  с учётом потерь преобразования в смесителях и допустимых амплитуд напряжений на их входах, коэффициенты усиления  УРЧ, УПЧ1 и УПЧ2


рассчитываются следующим образом:

дБ,

дБ 

дБ

где = 5...10 – коэффициент запаса усиления.

Проверим полученные результаты. Подставляя полученные значения коэффициентов усиления трактов в  выражение (3.1) получим :


дБ

Таким образом можно сделать вывод, что требуемый коэффициент усиления приёмного тракта обеспечивается.

На основании полученных  данных составляем функциональную схему тракта (рис.3.4)


3.3 Формулировка требований к приёмной системе

 

Итак, на основе проведенного энергетического расчёта а также распределения усиления по трактам приёмника сформулируем основные требования:

1)      обеспечение реальной чувствительности не хуже дБВт;

2)      обеспечение коэффициента усиления приёмного тракта не менее дБ;

3)      обеспечение требуемого по ТЗ подавления помех по зеркальному каналу, каналу ПЧ, соседнему каналу приёма;

4)      обеспечение суммарного коэффициента шума приёмного тракта не более дБ.






Рис.3.4. Функциональная схема приёмного СВЧ тракта

 

4. Выбор и расчёт СВЧ малошумящего усилителя

 

4.1. Бесструктурные модели транзистора СВЧ

 В основу расчёта и анализа тран­зисторного МШУ СВЧ должна быть положена модель транзис­тора. Это может быть структурная (физическая) модель, т. е. эквивалентная схема тран-зистора, либо бесструктурная модель, представляющая транзистор в виде эквивалентного четырёхпо­люсника.

Преимуществом структурной модели является высокая ин­формативность; эквивалентная схема характеризует поведение транзистора в диапазоне частот и позволяет устанавливать связь между её элементами и характеристиками транзистора. Бес­структурная модель транзистора менее информативна, она стро­го справедлива лишь на одной частоте. Для определения час­тотной зависимости параметров транзистора надо провести изме­рения на разных частотах. Однако бесструктурные модели более точны, поскольку их параметры могут быть измерены значитель­но точнее, чем параметры эквивалентной схемы.

Транзистор СВЧ как эквивалентный четырёхполюсник может быть описан, например,          Y- или H-параметрами, которые обычно используются на более низких частотах. Но для измерения этих параметров необходимо обеспечить режимы холостого хода и короткого замыкания, трудно осуществимые на СВЧ из-за влия­ния паразитных элементов схемы. Более подходят для его опи­сания параметры матрицы рассеяния или S-параметры, посколь­ку они измеряются в линиях с согласованными нагрузками, что на СВЧ наиболее просто.

Расчёт МШУ СВЧ принято проводить с использованием бес­структурной модели транзистора в S-параметрах. При необхо­димости бесструктурная модель может быть дополнена струк­турной моделью. Обе модели взаимосвязаны: по S-параметрам транзистора, измеренным на нескольких частотах, можно опре­делить (или уточнить) элементы его эквивалентной схемы и  наоборот, известная эквива­лентная схема позволяет рас­считать S-параметры на любой частоте диапазона, в котором эта схема корректна.

4.2. Системы S- и S'- параметров транзистора

 

В системе S-параметров транзистор пред­ставляется в виде четырёхпо­люсника, включенного в ли­нию передачи с волновым сопротивлением Z0. Линия согласо­вана с генератором (источником сигнала) и нагрузкой, т. е. со­противления генератора ZГ и нагрузки ZH равны волновому со­противлению линии (рис. 4.1).

Рис. 4.1. К определению S-параметров транзистора

Четырёхполюсник в согласованной линии передачи с волновым сопротивлением передачи Z0


Для определённости примем Z0=50 Ом. На входе и выходе четырехполюсника имеются па­дающие и отражённые волны напряжения , (i =1 для входа, i = 2 для выхода), связь между которыми задается параметрами матрицы рассеяния волн напряжения (S-параметрами):

 

Матрицу рассеяния волн напряжения принято называть прос­то матрицей рассеяния. Параметры матрицы рассеяния имеют ясный физический смысл:

    

- коэффициенты отражения напряжения от входа и выхода четырёхполюсника при согласова-нии на его выходе ()  и входе () соответственно;

   

- коэффициенты прямой и обратной передачи напряжения, определённые при тех же усло-виях.

Матрица рассеяния характеризует четырёхполюсник, нагру­женный на чисто резистивные сопротивления Z0. В реальных же усилителях транзистор оказывается нагруженным на сопротив­ления, не только не равные Z0, но в общем случае комплексные. Произвольно нагруженный четы­рёхполюсник принято описывать параметрами матрицы рассеяния волн мощности (S'-параметра­ми).

В системе S'-параметров транзистор в виде эквивалентно­го четырёхполюсника включается в общем случае на стыке двух линий передачи, не согласован­ных с генератором (источником сигнала) и нагрузкой (рис. 4.2).  Входная подводящая линия трансформирует сопротивление       ге­нератора  ZГ  в  сопротивление  Z1  в  плоскости  входных  клемм  че­тырёхполюсника, а  выходная

Рис. 4.2. К определению S' – параметров транзистора

Четырёхполюсник в рассогласованной линии передачи


подводящая линия – сопротивле­ние нагрузки ZH в сопротивление Z2 в плоскости его выходных клемм. Транзистор при этом нагружен на сопротивления Z1 и Z2, в общем случае комплексные. Падающие ai и отраженные bi волны мощности на входе (i=l) и выходе (i=2) четырёхпо­люсника связаны между собой матрицей рассеяния волн мощ­ности

где

                 (i=1, 2);

– комплексные амплитуды напряжений и токов на входе и выходе четырёхполюсника;

– комплексные сопротивления генератора (i=1) и нагрузки (i =2) в плоскости входных и выходных клемм четырёхполюсника соответственно;

   - коэффициенты отражения от входа и выхода четырёхполюсника при согласовании его на выходе (а2=0) и входе (а1=0) соответственно;

   - коэффициенты прямой и обратной передачи, определённые при тех же условиях.

Комплексные величины ai и bi принято называть волнами мощности, хотя они имеют размерность корня квадратного из мощности. Отношения этих величин, т. е. S'-параметры, не име­ют ясного физического смысла. Однако введение волн аi, bi, a также матрицы рассеяния S' целесообразно по следующим при­чинам. Во-первых, квадраты модулей аi, bi действительно явля­ются падающими и отражёнными волнами мощности, а их отно­шения — коэффициентами передачи и отражения мощности. Во-вторых, при равенстве сопротивлений Zi волновому сопротивлению Z0  S'-параметры сводятся к S-параметрам.


S'-параметры транзистора не могут быть измерены непосредственно, а могут быть расчитаны с помощью S-параметров.


4.3. Расчёт маломощных усилителей на транзисторах

 

Расчём МШУ проведём по методике, изложенной в работе [7].

Расчёт включает следующие этапы:

 1. выбор транзистора;

 2. выбор схемы включения транзистора;

 3. выбор режима работы транзистора;

 4. выбор числа каскадов, расчёт согласующих трансформаторов и цепей обратной связи;

 5. выбор схемы питания;

 6. составление электрической схемы;

 7. составление топологической схемы;

 8. анализ на ЭВМ топологической схемы с подключёнными транзисторами;

 9. оптимизация на ЭВМ параметров согласующих цепей;

   Рассмотрим каждый этап расчёта подробнее.

 

4.3.1. Выбор типа транзистора

 

В качестве транзистора выберем полевой транзистор с барьером Шоттки (ПТШ) N76038а японской фирмы NEC , который по сравнению с биполярным транзистором обеспечивает более низкий уровень шумов в рабочем диапазоне частот.

 

4.3.2. Выбор схемы включения транзистора

 

Для полевого транзистора используется схема с общим истоком (ОИ), об­щим затвором (ОЗ) и общим стоком (ОС). У схемы с ОИ лучшие усилительные свойства и хорошая устойчивость, но иногда для согласования с генератором при­меняют схему с ОЗ, а для согласования с нагрузкой - схему с ОС. Это связано с тем что при небольших значениях сопротивления нагрузки  и на низких частотах входное сопротивление схемы с ОЗ и выходное сопротивление для схемы с ОС имеют небольшую реактив­ную составляющую и близки к (– крутизна тран-зистора). Недостаток этих двух схем в том, что они обладают малой устойчивостью и боль­шим выходным (ОЗ) или входным (ОС) сопротивлением.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать