Численное решение уравнения Шредингера средствами Java
Численное решение уравнения Шредингера средствами Java
Содержание
Введение
1. Уравнение Шредингера и физический смысл его решений
1.1 Волновое уравнение Шредингера
1.2 Волновые функции в импульсном представлении
2. Методы численного решения нестационарного уравнения Шредингера
2.1 Метод конечных разностей для одномерного нестационарного уравнения Шредингера
2.2 Преобразование Фурье
2.3 Метод аппроксимации оператора эволюции (split-operator method)
3. Методы численного решения стационарного уравнения Шредингера
3.1 Метод Нумерова
4. Программная реализация численных методов средствами Java
4.1 Обзор языка программирования Java
4.2 Элементы программирования Java 2 используемые в работе
Заключение
Список использованных источников
Введение
Известно, что курс квантовой механики является одним из сложных для восприятия. Это связано не столько с новым и "необычным" математическим аппаратом, сколько прежде всего с трудностью осознания революционных, с позиции классической физики, идей, лежащих в основе квантовой механики и сложностью интерпретации результатов.
В большинстве учебных пособий по квантовой механике изложение материала основано, как правило, на анализе решений стационарного уравнений Шредингера. Однако стационарный подход не позволяет непосредственно сопоставить результаты решения квантовомеханической задачи с аналогичными классическими результатами. К тому же многие процессы, изучаемые в курсе квантовой механики (как, например, прохождение частицы через потенциальный барьер, распад квазистационарного состояния и др.) носят в принципе нестационарный характер и, следовательно, могут быть поняты в полном объеме лишь на основе решений нестационарного уравнения Шредингера. Поскольку число аналитически решаемых задач невелико, использование компьютера в процессе изучения квантовой механики является особенно актуальным.
1. Уравнение Шредингера и физический смысл его решений
1.1 Волновое уравнение Шредингера
Одним из основных уравнений квантовой механики является уравнение Шредингера, определяющее изменение состояний квантовых систем с течением времени. Оно записывается в виде
(1.1)
где Н — оператор Гамильтона системы, совпадающий с оператором энергии, если он не зависит от времени. Вид оператора определяется свойствами системы. Для нерелятивистского движения частицы массы в потенциальном поле U(r) оператор действителен и представляется суммой операторов кинетической и потенциальной энергии частицы
(1.2)
Если частица движется в электромагнитном поле, то оператор Гамильтона будет комплексным.
Хотя уравнение (1.1) является уравнением первого порядка по времени, вследствие наличия мнимой единицы оно имеет и периодические решения. Поэтому уравнение Шредингера (1.1) часто называют волновым уравнением Шредингера, а его решение называют волновой функцией, зависящей от времени. Уравнение (1.1) при известном виде оператора Н позволяет определить значение волновой функции в любой последующий момент времени, если известно это значение в начальный момент времени. Таким образом, волновое уравнение Шредингера выражает принцип причинности в квантовой механике.
Волновое уравнение Шредингера может быть получено на основании следующих формальных соображений. В классической механике известно, что если энергия задана как функция координат и импульсов
H,(1.3)
то переход к классическому уравнению Гамильтона—Якоби для функции действия S
H
можно получить из (1.3) формальным преобразованием
,
Таким же образом уравнение (1.1) получается из (1.3) при переходе от (1.3) к операторному уравнению путем формального преобразования
, (1.4)
если (1.3) не содержит произведений координат и импульсов, либо содержит такие их произведения, которые после перехода к операторам (1.4) коммутируют между собой. Приравнивая после этого преобразования результаты действия на функцию операторов правой и левой частей полученного операторного равенства, приходим к волновому уравнению (1.1). Не следует, однако, принимать эти формальные преобразования как вывод уравнения Шредингера. Уравнение Шредингера является обобщением опытных данных. Оно не выводится в квантовой механике, так же как не выводятся уравнения Максвелла в электродинамике, принцип наименьшего действия (или уравнения Ньютона) в классической механике.
Легко убедиться, что уравнение (1.1) удовлетворяется при волновой функцией
,
описывающей свободное движение частицы с определенным значением импульса. В общем случае справедливость уравнения (1.1) доказывается согласием с опытом всех выводов, полученных с помощью этого уравнения.
Покажем, что из уравнения (1.1) следует важное равенство
,(1.5)
указывающее на сохранение нормировки волновой функции с течением времени. Умножим слева (1.1) на функцию *, a уравнение, комплексно сопряженное к (1.1), на функцию и вычтем из первого полученного уравнения второе; тогда находим
,(1.6)
Интегрируя это соотношение по всем значениям переменных и учитывая самосопряженность оператора , получаем (1.5).
Если в соотношение (1.6) подставить явное выражение оператора Гамильтона (1.2) для движения частицы в потенциальном поле, то приходим к дифференциальному уравнению (уравнение непрерывности)
, (1.7)
где является плотностью вероятности, а вектор
(1.8)
можно назвать вектором плотности тока вероятности.
Комплексную волновую функцию всегда можно представить в виде
где и — действительные функции времени и координат. Таким образом, плотность вероятности
,
а плотность тока вероятности
.(1.9)
Из (1.9) следует, что j = 0 для всех функций , у которых функция Ф не зависит от координат. В частности, j= 0 для всех действительных функций .
Решения уравнения Шредингера (1.1) в общем случае изображаются комплексными функциями. Использование комплексных функций весьма удобно, хотя и не необходимо. Вместо одной комплексной функции состояние системы можно описать двумя вещественными функциями и , удовлетворяющими двум связанным уравнениям. Например, если оператор Н — вещественный, то, подставив в (1.1) функцию и отделив вещественную и мнимую части, получим систему двух уравнений
, ,
при этом плотность вероятности и плотность тока вероятности примут вид
, . [1]
1.2 Волновые функции в импульсном представлении.
Фурье-образ волновой функции характеризует распределение импульсов в квантовом состоянии . Требуется вывести интегральное уравнение для с Фурье-образом потенциала в качестве ядра.
Решение. Между функциями и имеются два взаимно обратных соотношения.
(2.1)
(2.2)
Если соотношение (2.1) использовать в качестве определения и применить к нему операцию , то с учетом определения 3-мерной -функции,
,
в результате, как нетрудно убедиться, получится обратное соотношение (2.2). Аналогичные соображения использованы ниже при выводе соотношения (2.8).
Положим далее
,(2.3)
тогда для Фурье-образа потенциала будем иметь
(2.4)
Предполагая, что волновая функция удовлетворяет уравнению Шредингера
(2.5)
Подставляя сюда вместо и соответственно выражения (2.1) и (2.3), получаем
В двойном интеграле перейдем от интегрирования по переменной к интегрированию по переменной , а затем эту новую переменную вновь обозначим посредством . Интеграл по обращается в нуль при любом значении лишь в том случае, когда само подынтегральное выражение равно нулю, но тогда
.(2.6)
Это и есть искомое интегральное уравнение с Фурье-образом потенциала в качестве ядра. Конечно, интегральное уравнение (2.6) можно получить только при условии, что Фурье-образ потенциала (2.4) существует; для этого, например, потенциал должен убывать на больших расстояниях по меньшей мере как , где .
Необходимо отметить, что из условия нормировки
(2.7)
следует равенство
.(2.8)
Это можно показать, подставив в (2.7) выражение (2.1) для функции :
.
Если здесь сначала выполнить интегрирование по , то мы без труда получим соотношение (2.8).[2]
2. Методы численного решения нестационарного уравнения Шредингера
2.1 Метод конечных разностей для одномерного нестационарного уравнения Шредингера
В большинстве учебных пособий по квантовой механике изложение материала основано, как правило, на анализе решений стационарного уравнений Шредингера. Однако стационарный подход не позволяет непосредственно сопоставить результаты решения квантовомеханической задачи с аналогичными классическими результатами. К тому же многие процессы, изучаемые в курсе квантовой механики (как, например, прохождение частицы через потенциальный барьер, распад квазистационарного состояния и др.) носят в принципе нестационарный характер и, следовательно, могут быть поняты в полном объеме лишь на основе решений нестационарного уравнения Шредингера. Поскольку число аналитически решаемых задач невелико, использование компьютера в процессе изучения квантовой механики является особенно актуальным.
Нестационарное уравнение Шредингера, определяющее эволюцию волновой функции во времени, представляет собой дифференциальное уравнение первого порядка по времени и имеет следующий вид
(3.1)
где оператор полной энергии системы. Для одномерного случая
Общее решение уравнения (1) формально можно записать в виде
(3.2)
где - волновая функция системы в момент времени
- оператор эволюции (пропагатор).
Особенностью выражения (3.2) является то, что в показателе экспоненты стоит оператор. Определить действие оператора эволюции на волновую функцию можно, например, разложив ее по собственным функциям оператора . Так, в случае дискретного спектра выражение для волновой функции в произвольный момент времени имеет вид
(3.3)
Аналогичное выражение может быть получено и для непрерывного спектра.
Разложение (3.3) удобно использовать в тех случаях, когда решения стационарного уравнения Шредингера для конкретной задачи являются известными. Но к сожалению круг таких задач очень ограничен. Большинство современных численных методов решения уравнения (3.1) основаны на использовании различных аппроксимаций оператора эволюции . Так, например, разложение оператора эволюции в ряд Тейлора с сохранением первых двух членов дает следующую схему