Численное решение уравнения Шредингера средствами Java

,(3.4)

здесь номер шага по времени. Существенным недостатком этого алгоритма является необходимость знать волновую функцию в моменты  и . Кроме того, для оценки действия оператора  на функцию  нужно вычислять вторую производную по координате. Простейшая конечно-разностная аппроксимация второй производной


(3.5)


дает неудовлетворительный результат. (См. программный блок 1)[3]


2.2 Преобразование Фурье


Начнем с комплексного ряда Фурье



Рассмотрим случай L.Тогда сумму можно преобразовать в интеграл следующим образом: определим и =g(y).Так как  возрастает каждый раз на единицу ,то


где .


Таким образом, полученные выше формулы приобретают вид



  (4.1)


Величина называется преобразованием Фурье от  и наоборот. Положение множителя  довольно произвольно; часто величины  и  определяют более симметрично:


 

 (4.2)


Выражения (4.1) или (4.2) можно скомбинировать следующим образом:


(4.3)


Равенство (4.3) удовлетворяется для любой функции  это позволяет сделать интересный вывод об интеграле  как функции . Он равен нулю всюду, кроме точки , а интеграл от него по любому промежутку ,включающему , равен единице, т.е. эта функция имеет бесконечно высокий и бесконечно узкий пик в точке .

Обычно определяют  (Дирака)  следующим образом:


   

   (4.4)

Из этих уравнений следует, что


 (4.5)


для любой функции , в случае если интервал интегрирования включает точку .

Проделанные выше операции над интегралами Фурье показали, что


 (4.6)


Это интегральное представление функции.

Дельта – функцию можно использовать, чтобы выразить важный интеграл  через преобразование Фурье (4.1) от :


(4.7)


Это равенство называется теоремой Парсеваля. Она полезна для понимания физической интерпретации преобразования Фурье для , если известен физический смысл .

Предположим, что  четная функция. Тогда



Заметим теперь, что -- также четная функция. Поэтому


(4.9)


Функция и ,определенные теперь только для положительных  и , называются косинус - преобразованиями Фурье по отношению друг к другу.

Рассматривая преобразования Фурье нечетной функции, получаем аналогичные соотношения Фурье между синус - преобразованиями Фурье:


 (4.10)


Если нужно, можно симметризовать выражения, поставив множитель  перед каждым интегралом (4.7)-(4.10). [4]


2.3 Метод аппроксимации оператора эволюции (split-operator method)


Рассмотрим более подробно другой метод аппроксимации оператора эволюции, в котором отсутствуют недостатки, свойственные рассмотренной выше схеме. Здесь оператор эволюции аппроксимируется симметричным расщеплением оператора кинетической энергии (split-operator method)


(5.1)

Основная погрешность данной аппроксимации связана с некоммутативностью операторов кинетической и потенциальной энергии. Вычисление действия такого оператора на волновую функцию включает следующие шаги. Преобразованная в импульсное представление волновая функция умножается на  и преобразуется обратно в координатное представление, где умножается на . Полученный результат снова преобразуется в импульсное представление, умножается на  преобразуется обратно в координатное представление. На этом один шаг по времени завершается. Переход от одного представления к

другому осуществляется посредством преобразования Фурье.

В данной курсовой работе используется Гауссов волновой пакет вида , а также ступенчатый потенциал. Сначала преобразуем нашу волновую функцию из координатного представления в импульсное


 ,(5.2)


затем умножим полученный результат на . На этом завершается половина временного шага. Полученный результат снова преобразуется в координатное представление


(5.3)


и умножается на . После чего вновь преобразуется в импульсное представление



 (5.4)


и умножается на . Завершается шаг по времени еще одним преобразованием полученной волновой функции в координатное представление


.(5.5)


Один шаг по времени завершен.

В данной работе этот метод реализован в среде Java, ниже приведены программный блок и полученные графики поведения волновой функции в различные моменты времени.

Важная особенность этого метода заключается в том, что действие каждого из операторов оценивается в их соответствующем локальном представлении.

С методической точки зрения ценность нестационарного подхода состоит в существенно большей наглядности и информативности результатов, по сравнению с результатами решения стационарного уравнения Шредингера. Круг задач, которые могут быть рассмотрены на основе решения нестационарного уравнения Шредингера очень разнообразен.

Для иллюстрации вышесказанного рассмотрим задачу о движении частицы в поле потенциального барьера. Хотя стационарный подход позволяет определить коэффициенты прохождения и отражения частицы он, однако, не позволяет рассмотреть реальную пространственно-временную картину движения частицы через потенциальный барьер, которая является существенно нестационарной. Рассмотрение задачи на основе решения нестационарного уравнения Шредингера позволяет не только сопоставить классический и квантовый подход к проблеме, но и получить ответы на ряд вопросов, представляющих значительный практический интерес (например, длительность процесса туннелирования, скорости прошедших и отраженных частиц и т.д.). Ниже мы приводим результаты решения нестационарного уравнения Шредингера для данной задачи. Начальное состояние частицы задано в виде пакета гауссовой формы, движущегося в направлении области действия потенциала. На графиках представлена временная картина туннелирования такого пакета через потенциальный барьер прямоугольной формы в виде "мгновенных снимков" волнового пакета в разные моменты времени. Как видно, при попадании пакета в область действия потенциала его форма нарушается в результате формирования отраженного волнового пакета и его интерференции с падающим на препятствие пакетом. Через некоторое время формируются два пакета: отраженный и прошедший через препятствие. Движение падающего и отраженного пакета можно сопоставить с движение классической частицы, положение которой совпадает с максимумом в распределении вероятности. В случае протяженного потенциала отраженный пакет "отстает" от отраженной от барьера классической частицы. Физически это связано с тем, что пакет частично проникает в классически запрещенную область, в то время как в классике отражение происходит строго в точке скачка потенциала. Образование же прошедшего пакета представляет собой сугубо квантовый эффект не имеющий классических аналогий.[3]


3. Методы численного решения стационарного уравнения Шредингера


3.1 Метод Нумерова


Рассмотрим решения одномерного стационарного уравнения Шредингера (3.1) частицы, движущейся в одномерном потенциале U(x).


(3.1)


Будем при этом полагать, что его форма имеет потенциала, представленного на рис.1: в точках xmin, xmax потенциал становится бесконечно большим. Это означает, что в точках xmin, xmax расположены вертикальные стенки, а между ними находится яма конечной глубины.


Рисунок 1.


Для удобства дальнейшего решения запишем уравнение Шредингера (3.1) в виде:


(3.2)

Где


(3.3)


С математической точки зрения задача состоит в отыскании собственных функций оператора, отвечающим граничным условиям


(3.4)


и соответствующих собственных значений энергии E.

Так как при  и  при , , то можно ожидать, что собственному решению данной задачи соответствует собственная функция, осциллирующая в классически разрешенной области движения  и экспоненциально затухающим в запрещенных областях, где  ,, при ,  . Так как все состояния частицы в потенциальной яме оказываются связанными (т.е. локализованными в конечной области пространства), спектр энергий является дискретным. Частица, находящаяся в потенциальной яме конечных размеров  при ,  при , имеет дискретный спектр при  и непрерывный спектр при .

Традиционно для решении задачи о нахождении собственных значений уравнения Шредингера используется метод пристрелки. Идея метода пристрелки состоит в следующем. Допустим, в качестве искомого значения ищется одно из связанных состояний, поэтому в качестве пробного начального значения энергии выбираем отрицательное собственное значение. Проинтегрируем уравнение Шредингера каким-либо известным численным методом на интервале . По ходу интегрирования от  в сторону больших значений  сначала вычисляется решение  , экспоненциально нарастающее в пределах классически запрещенной области. После перехода через точку поворота , ограничивающую слева область движения разрешенную классической механикой, решение уравнения становится осциллирующим. Если продолжить интегрирование далее за правую точку поворота , то решение становится численно неустойчивым. Это обусловлено тем, что даже при точном выборе собственного значения, для которого выполняется условие , решение в области  всегда может содержать некоторую примесь экспоненциально растущего решения, не имеющего физического содержания. Отмеченное обстоятельство является общим правилом: интегрирование по направлению вовнутрь области, запрещенной классической механикой, будет неточным. Следовательно, для каждого значения энергии более разумно вычислить еще одно решение , интегрируя уравнение (3.1) от  в сторону уменьшения . Критерием совпадения данного значения энергии является совпадение значений функций  и  в некоторой промежуточной точке . Обычно в качестве данной точки выбирают левую точку поворота . Так как функции , являются решениями однородного уравнения (3.1), их всегда можно нормировать так, чтобы в точке  выполнялось условие . Помимо совпадения значений функций в точке  для обеспечения гладкости сшивки решений потребуем совпадения значений их производных


(3.5)

Используя в (17) простейшие левую и правую конечно-разностные аппроксимации производных функций ,  в точке , находим эквивалентное условие гладкости сшивки решений:


(3.6)


Число  является масштабирующим множителем, который выбирается из условия  Если точки поворота отсутствуют, т.е. E>0, то в качестве  можно выбрать любую точку отрезка . Для потенциалов, имеющих более двух точек поворота и, соответственно, три или более однородных решений, общее решение получается сшивкой отдельных кусков. В описанном ниже документе, для интегрирования дифференциального уравнения второго порядка мы используем метод Нумерова. Для получения вычислительной схемы аппроксимируем вторую производную трехточечной разностной формулой:

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать