Дрейфовые транзисторы их параметры, преимущества и недостатки

Расчет параметров и характеристик дрейфовых транзисторов осложнен тем обстоятельством, что концентрация легирующей примеси в слоях транзистора зависит от координаты. Зависят от координаты подвижность, коэффициент диффузии и время жизни носителей заряда. Это создает серьезные математические трудности для получения расчетных соотношений на основе решения уравнения непрерывности. Получение конечных результатов в аналитической форме в этом случае возможно только для ограниченного числа упрощенных модельных задач.

Для расчета основных соотношений в дрейфовом транзисторе воспользуемся приближенным теоретическим подходом[4]. В дрейфовом транзисторе с узкой базой при WБ /Ln<0,5 объемная рекомбинация слабо влияет на распределение электронов в базе п(х). Поэтому для отыскания распределения п(х) можно считать, что в первом приближении сквозной ток электронов Jnx в базе постоянен. С учетом этого допущения, подставив выражение для поля Ех [3]


 (2.1.1)


в уравнение для тока электронов и использовав соотношение Эйнштейна Dn=μnφT, получим


 (2.1.2)


В этом уравнении переменные разделяются, и поэтому


 (2.1.3)


В (2.1.3) верхний предел интегрирования x1К является левой границей ОПЗ коллекторного перехода (рис. 2.1.1, в). Взяв интеграл в левой части (2.1.3), получим


 (2.1.4)


При записи правой части мы воспользовались условием Jnx=const и вынесли из-под знака интеграла усредненное значение коэффициента диффузии электронов:



где WБ =x1K -x1Э-толщина квазиэлектронейтральной базы.


В соответствии с граничным условием pn=ni2exp(U/φT) [4] для носителей заряда у коллектора имеем


 (2.1.5)


Выражая из (2.1.4) концентрацию электронов, получаем

 (2.1.6)


Запишем условие квазиэлектронейтральности заряда в базе:


p(x)-n(x)+N(x)≈0 (2.1.7)


или


p(x)=n(x)-N(x), (2.1.8)


Выражение (2.1.6) с учетом (2.1.8) представляет собой интегральное уравнение для нахождения п(х) при произвольном уровне инжекции. В общем случае оно может быть решено только численными методами. При низком уровне инжекции электронов в базе выражение (2.1.6) можно упростить, так как этому условию соответствует


n(x)<< - N(x), p(x)≈ - N(x) . (2.1.9)


Во избежание недоразумений напомним, что знак результирующей концентрации примеси в базе определяется знаком заряда ионов акцепторов, т. е. сама результирующая концентрация примеси в базе N(x)<0 (рис. 2.1.1, в). Кроме того, знак минус перед Jnx в выражении (2.1.6) связан с тем, что вектор плотности тока электронов направлен против оси х, т.е. Jnx<0. При подсчете тока электронов, учтя положительное направление тока IЭ (стрелка на рис. 2.1.1, а), будем далее полагать Inx=-SЭJnx.

Таким образом, в нормальном активном режиме работы транзистора (UK<<-φT) и низком уровне инжекции электронов в базе


 (2.1.10)


С помощью полученного выражения можно получить распределение п(х) в аналитическом виде, если интеграл от N(x) выражается в квадратурах. В противном случае необходимо применять численные методы.

Рассмотрим практически важный случай, когда реальную зависимость N(x) в базе можно аппроксимировать экспонентой. На рис. 2.1.1,6 такая аппроксимация соответствует штриховой линии, которая проходит через точки графика с координатами (хЭ, NАЭ) и (xК, No), т.е.


N*(x)=-N*10·e-ax+N0=-NАЭ exp(-a(x-xЭ)+N0. (2.1.11)


Параметры аппроксимации определяются следующим образом:


N*10=NАЭexp(axЭ). (2.1.12)


Учитывая то что напряженность электрического поля равна[4]:


 (2.1.13)


Получаем


 (2.1.14)


Это означает, что при экспоненциальном распределении примеси напряженность электрического поля практически во всей квазиэлектронейтральной базе постоянна, за исключением небольшой приколлекторной части базы, как правило, занятой ОПЗ коллекторного перехода. Знак минус означает, что поле в базе направлено против оси х, т. е. ускоряет электроны от эмиттера к коллектору. Для оценки «силы» влияния ускоряющего поля в базе вводят понятие фактора поля, который показывает, во сколько раз разность потенциалов в базе ΔUБx=ExWБ0, возникающая за счет наличия «встроенного» поля в базе Ех, больше φТ:


 (2.1.15)


Таким образом, фактор поля тем больше, чем больше перепад концентрации акцепторов в базе. Например, при NАЭ = 1016 см-3 , N0=1014 см -3 имеем η=4,6.

Подставляя (2.1.11) в (2.1.10) и учитывая, что практически во всей базе N* (х) >>N0), получаем


 (2.1.16)


В бездрейфовом транзисторе η =o, и распределение концентрации электронов в базе практически линейно. При наличии ускоряющего (η >o) электрического поля часть тока электронов по-прежнему переносится за счет диффузии, а другая часть - за счет дрейфа. По этой причине градиент концентрации электронов вблизи эмиттера уменьшается, как показано на рис. 2.1.2 [4]


а) распределение концентрации электронов от координаты, б) -зависимость m(η} в транзисторе с ускоряющим полем в базе, в) распределение п(х) в реальном транзисторе

Рис. 2.1.2.


Уменьшается и общий заряд электронов Qn в базе. Это приводит к уменьшению тока объемной рекомбинации электронов в базе JvA=Qn/τn, а значит, к возрастанию коэффициента переноса при увеличении ускоряющего поля в базе. Вычисляя заряд Qn и ток объемной рекомбинации электронов в базе в соответствии с выражениями [4]:


 (2.1.17)

и  (2.1.18)


и учитывая, что 1пх= =-SэJпх, получаем


 (2.1.19)

 (2.1.20)


Функция F (η) учитывает влияние ускоряющего поля в базе и определяется выражением

 (2.1.21)


График зависимости т(η) приведен на рис. 2.1.2,6. Штриховая линия соответствует линейной аппроксимации m(η)≈1+0,45η. Значение коэффициента переноса определяется выражением


 (2.1.22)


Таким образом, коэффициент переноса в дрейфовом транзисторе оказывается больше, чем в транзисторе с однородной базой такой же толщины, так как значения функции F(η)<l.

Постоянная накопления заряда электронов в базе дрейфового транзистора сильно уменьшается с ростом ускоряющего поля в базе.


 (2.1.23)


При наличии тормозящего поля в базе (знак фактора поля η меняется на противоположный) τα увеличивается с ростом η, а коэффициент переноса χ сильно уменьшается.

В транзисторах, изготовленных методом двойной односторонней диффузии (см. рис. 2.1.1), наличие тормозящего поля в начале базы частично или полностью компенсирует положительное влияние ускоряющего поля в остальной части базы. Распределение п(х) показано на рис. 2.1.2, б сплошной линией. Поэтому эффективные значения функции m(η) не столь высоки и могут быть даже меньше единицы. В таких транзисторах основной вклад в уменьшение постоянной накопления дает не поле в базе, а малая толщина базы, обеспечиваемая диффузионной технологией.


2.2 Физические процессы в дрейфовых транзисторах при больших плотностях тока


При больших плотностях тока концентрация электронов в базе п+-р-п-п+ транзистора увеличивается, а в силу квазиэлектронейтральности увеличивается и концентрация дырок. Это приводит к повышению уровня инжекции в определенных частях базы и ликвидации там встроенного электрического поля. Для транзистора, полученного методом двойной односторонней диффузии, уровень инжекции электронов наиболее сильно увеличивается в приэмиттерной части, а затем и в приколлекторной части базы (рис. 2.16, в). Повышение концентрации дырок в базе вблизи ОПЗ эмиттера приводит к возрастанию доли тока дырок, инжектированных из базы в эмиттер, и снижению коэффициента инжекции. При дальнейшем увеличении тока уровень инжекции становится высоким практически во всей области базы [n(x)>>|N(x)|] и процессы переноса электронов в базе дрейфового транзистора подобны процессам в базе бездрейфового транзистора. Указанные процессы определяют зависимость коэффициента передачи тока от тока коллектора (или эмиттера). Эффекты Кирка и квазинасыщения дают дополнительный вклад в спад коэффициента передачи тока транзистора при больших плотностях тока.

Рассмотрим физические процессы, происходящие в базе транзистора при произвольных уровнях инжекции. Граничное условие для носителей заряда в базе на границе ОПЗ эмиттера имеет вид[4]


 (2.2.1)


Подставив (2.2.1) в (2.1.4) и полагая х=х2Э, получим выражение для сквозного тока электронов в базе


  (2.2.2)


Интеграл от концентрации дырок р(х) в базе с помощью условия квазиэлектронейтральности (2.1.8) можно представить в виде


 (2.2.3)


Здесь Qp и Qn - заряды дырок и электронов в квазиэлектронейтральной базе, a QВ0 - заряд равновесных дырок в базе:


 (2.2.4)

 (2.2.5)


Известно,[4] что при низком уровне инжекции заряд электронов в базе Qn пропорционален сквозному току 1пх. Коэффициент пропорциональности представляет собой постоянную накопления заряда электронов в базе и определяется (2.1.23). При высоком уровне инжекции [п(х)>>|N(х)|] пропорциональность между Qn и Inx по-прежнему сохраняется, но коэффициент пропорциональности имеет другое значение, определяемое формулой [3]:


 (2.2.6)


В общем случае


 (2.2.7)


где т=т(η) при низком уровне инжекции и т=2 при высоком уровне инжекции электронов в базе.

Выражение (2.2.2) с учетом (2.2.4) , (2.2.5) и (2.2.7) можно представить в виде


 (2.2.8)


В (2.2.8) обозначено


; (2.2.9)

 (2.2.10)


Ток /Эns определяет электронную составляющую тока насыщения эмиттерного р-п перехода при низком уровне инжекции. Ток ikf является характеристическим током, определяющим границу между низким и высоким уровнями инжекции электронов в базе.

Далее будем рассматривать нормальный активный режим. Для этого режима UK<<-φT, и поэтому


 (2.2.11)


Использовав (2.2.11), можно установить связь между напряжением Uэ и сквозным током Inx.


 (2.2.12)

Определим ток объемной рекомбинации электронов в базе, В соответствии с [4] этот ток


 (2.2.13)


Время жизни электронов зависит от концентрации легирующих примесей [4], а поэтому и от координаты. Тогда в соответствии с [4] запишем


 (2.2.14)

 (2.2.15)


где τпо(То), τро(Tо) определяются при Tо=300 К.

При высоком уровне инжекции можно считать, что концентрация электронов в базе уменьшается практически линейно от ее значения nрэ у эмиттера до нуля у коллектора:

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать