(3.7)
Частотная зависимость каждого из этих сомножителей нами определена. Тем не менее, определение предельной частоты fα, представляет значительную сложность. Если положить, что частотная зависимость каждого из сомножителей может быть представлена частотной зависимостью вида[5]
(3.8)
(что для β*(ω) будет справедливо только на частотах ω < ωβ*), то выражение для | α | будет иметь вид
(3.9)
Решение такого уравнения в общем, виде связано со значительными трудностями, так как даже при двух сомножителях уравнение превращается в биквадратное. Задача может быть упрощена с помощью решения для двух сомножителей. Предположим, что мы имеем две RС-цепочки, модули коэффициентов передачи тока для которых соответственно равны
(3.10)
(3.11)
где ω1 и ω2- частоты спадания в раз величин α1 и α2. В этом случае частота , характеризующая спадание результирующего коэффициента передачи α12 =α1 α2 в раз, определяется через соотношение частот
и
(3.12)
следующим образом:
(3.13)
Зная отношение частот , можно найти С (х) (по графику функции С(x)[5]) и определить результирующую граничную частоту для двух цепочек.
Несколько сложнее учесть третий сомножитель, так как результирующая амплитудно-частотная характеристика отличается от амплитудно-частотной характеристики одиночной цепочки, и повторить такой же прием для учета третьего члена, полагая
ƒ123=ƒ12C(x), где x =ƒ3/ƒ12,
можно лишь с некоторыми приближениями. Решение задачи облегчается тем, что результирующая частота всегда будет меньше меньшей из частот, а в области ω < ω12 амплитудно-частотная характеристика α12(ω) практически совпадает с амплитудно-частотной характеристикой одиночной RС-цепочки.
Отметим, что если одна из частот более чем в 5 раз превышает другую частоту, то ее влияние можно не учитывать, так как результирующая частота будет практически совпадать со значением меньшей частоты. Возвращаясь к приведенному выше примеру, рассчитаем величину fa дрейфового транзистора для тока 1 ма (ƒγ= 46,5 Мгц, ƒβ= 100 Мгц).
Полагая f1 = ƒβ = 100 Мгц и ƒ2 = ƒγ = 46,5 Мгц, получаем х = 0,465, С (х) = 0,42 и ƒα = ƒβ ·0,42 = 42 Мгц. В то же время при токе эмиттера iЭ = 15 ма fa = ƒβ = =100Мгц. При iЭ= 0,3 ма ƒβ > 5fy и ƒα= ƒγ = 14,7 Мгц. Так, в зависимости от режима по току предельная частота fa может меняться в 10-20 раз. Для того чтобы полностью использовать возможности дрейфового транзистора, необходимо выбирать такой рабочий ток эмиттера, который не приводил бы к ухудшению частотных свойств.
Следует отметить еще одну особенность дрейфового транзистора. В силу того, что в области базы концентрация у эмиттерного перехода высокая, а у коллекторного перехода низкая, то сопротивление базы дрейфового транзистора будет больше, чем сопротивление базы бездрейфового транзистора, концентрация примесей у которого по всей толщине базы будет высокой (равной NЭ). Расчеты показывают, что с ростом перепада концентраций сопротивление базы дрейфового транзистора возрастает почти по тому же самому закону, что и ƒβ. Если обеспечить условия, позволяющие получать fa=ƒβ, и сравнить максимальную частоту ƒМАКС дрейфового транзистора с максимальной частотой обычного бездрейфового транзистора, у которого концентрация примесей в области базы соответствует концентрации NЭ у эмиттера дрейфового транзистора, то получим следующую приближенную зависимость[5]:
(3.14)
Возможный выигрыш в максимальной частоте усиления мощности определяется для дрейфового транзистора практически только возможностью уменьшить коллекторную емкость, так как увеличение fα = ƒβ в числителе выражения для максимальной частоты усиления[5]
(3.15)
сопровождается пропорциональным увеличением rб в знаменателе этого выражения.
При получении зависимости (3.14) также предполагалось, что ширина коллекторного перехода может быть выбрана достаточно большой [5] и величина коллекторного напряжения ничем не ограничена.
Следует учитывать, что поскольку Из-за саморазогрева, поверхностного пробоя и так далее не удается обеспечить работу дрейфового транзистора при расчетных максимальных напряжениях, определяемых лавинным пробоем, то реальный выигрыш будет меньше, чем дает максимальное значение радикала..Тем не менее дрейфовые транзисторы будут всегда иметь более низкие значения коллекторных емкостей и более высокие пробивные напряжения, чем бездрейфовые транзисторы, изготовленные из сильнолегированного материала.
Таким образом, можно сделать окончательный вывод, что при прочих равных условиях (W, NЭ, SЭ) наилучшими частотными свойствами будут обладать такие дрейфовые транзисторы, у которых будет обеспечена максимально возможная ширина коллекторного перехода.
Однако увеличение ширины коллекторного перехода приводит к появлению некоторых нежелательных особенностей. Одной из таких особенностей является значительное увеличение рассеиваемой мощности. С одной стороны, мы определили, что дрейфовый транзистор должен работать при довольно больших (порядка 5-10 ма и более) токах эмиттера. С другой стороны, для того чтобы область объемного заряда распространилась на весь широкий переход, необходимы значительные (30-50 в и более) коллекторные напряжения. В этом случае рассеиваемая на коллекторе мощность будет составлять 300-500 мвт. В то же время размеры электродов (SЭ, SК) высокочастотных транзисторов должны быть меньше размеров электродов низкочастотных транзисторов. Уже исходя из этих соображений выбирать очень малые значения NК, при которых приколлекторная область имела бы удельное сопротивление, близкое к собственному, не представляется целесообразным.
Другим недостатком дрейфовых транзисторов с широким коллекторным переходом является сильная зависимость ширины перехода от напряжения на коллекторе. Особое значение это будет иметь при использовании таких транзисторов в импульсных схемах.
Высокое удельное сопротивление области коллектора нежелательно и из тех соображений, что это будет приводить к значительным падениям напряжения в теле коллектора. Для того чтобы уменьшить этот эффект, используют низкоомную пластину с нанесенным на нее тонким высокоомным эпитаксиальным слоем. Поочередной или одновременной диффузией в высокоомный слой донорных и акцепторных примесей создают сильнолегированную область эмиттера (р+) и область базы (п).
Распределение избыточных концентраций доноров и акцепторов в дрейфовом транзисторе (без соблюдения масштаба).
Рис. 3.1.
Толщина эпитаксиальной высокоомной пленки выбирается таким образом, чтобы обеспечивалась заданная величина толщины базы W и ширины коллекторного перехода Wi (рис. 3.1).Сразу за границей перехода начинается низкоомная область тела коллектора (р+).
При изменении напряжения на коллекторе сначала (при малых напряжениях) переход распространяется как в сторону базы, так и в сторону коллектора. Очень скоро, однако, концентрация со стороны базы начинает превышать концентрацию со стороны коллектора. Переход начинает расширяться в основном в высокоомной части коллектора (рис. 3.2).
Зависимость распределения объемного заряда в диффузионном переходе и ширины перехода от изменения напряжения.
Рис. 3.2.
При достаточно высоких напряжениях ширина перехода достигает величины Wi и область объемного заряда - низкоомной части исходной пластины. Последовательное сопротивление тела коллектора, эффект которого во многом соответствует эффекту сопротивления базы, будет определяться величиной удельного сопротивления этой сильнолегированной части.
График изменения распределения неравновесных носителей с изменением толщины базы.
Рис. 3.3.
Расширение перехода в глубь базы будет изменять ширину базы, что приведет к появлению диффузионной емкости коллектора и коэффициента обратной передачи напряжения μЭК.
Из графиков рис. 3.3 можно видеть, что дрейфовый транзистор должен характеризоваться меньшими значениями μЭК и СКЭ по сравнению с бездрейфовым транзистором. Действительно, величина μЭК для дрейфового транзистора уменьшается в 15 раз при μ = 2 и почти в 400 раз при μ = 4.
Величина диффузионной емкости коллектора может быть рассчитана по формуле
(3.16)
Обратим внимание на один интересный момент. Из графика рис. 3.1 можно видеть, что, хотя в значительной части базы будет действовать дрейфовое поле, ускоряющее неосновные носители в направлении к коллектору, в части базы, непосредственно примыкающей к эмиттеру, градиент концентрации доноров имеет обратный знак. У самого эмиттера в области базы будет иметь место тормозящее поле. Расчеты и эксперимент показывают, что при малых токах эмиттера это тормозящее поле несколько снижает коэффициент передачи тока α.
Практически мы работаем при токах, обеспечивающих в этой области довольно значительную концентрацию неравновесных носителей. В результате эффект тормозящего поля становится практически неощутимым.
Перейдем к рассмотрению влияния величины подвижности на основные соотношения и параметры дрейфового транзистора. Следует заметить, что поскольку концентрации примесей в области базы транзистора будут практически заключены в пределах 1018-1018 см-3, то, рассчитывая основные параметры дрейфового транзистора, необходимо учитывать снижение подвижности при повышенных концентрациях, так как уменьшение подвижности начинается приблизительно со значений концентрации, равных 1015 см-3.
При концентрациях доноров (германий n-типа) свыше 1015 см-3 зависимость подвижности неосновных носителей (дырок) от концентрации хорошо аппроксимируется следующим выражением:
(3.17)
Этим выражением можно пользоваться до концентраций, равных 1018 см-3, т. е. во всем практически необходимом диапазоне изменений концентраций. Для экспоненциального закона распределения примесей зависимость подвижности дырок в базе от координаты х определится на основании
(3.18)
соотношением
(3.19)
где η- фактор поля.
Числовые коэффициенты в данном случае имеют размерность подвижности.
Полагая, что дырки движутся через базу в течение некоторого времени τ с некоторой средней скоростью Vcр,
(3.20)
получаем, что средняя скорость определяется средней подвижностью:
(3.21)
Определяя интегрированием пролетное время τ:
(3.22)
можно рассчитать среднюю подвижность, выраженную через дрейфовый потенциал:
(3.23)
Средняя подвижность будет равна
(3.24)
где μp определяется соотношением (3.17).
Уменьшение подвижности с ростом концентрации примесей должно привести к уменьшению предельной частоты коэффициента переноса ωβ. Поправка к формулам (3.3) и (3.4) может быть сделана заменой величины Dp на величину Dpcp, определенную на основании соотношения Эйнштейна:
Расчеты и эксперименты показывают, что для таких дрейфовых транзисторов, как, например, ГТ308, П401- П403 или П410-П411, П418, среднее значение коэффициента диффузии составляет около 25 см2/сек. Так как при низких концентрациях Dp = 47 см2/сек, то можно видеть, что пренебрежение падением подвижности при больших концентрациях приведет к завышению расчетного значения ƒβ почти вдвое. При перепаде концентраций порядка 100 с учетом падения подвижности получим реальное увеличение частоты ƒβ в дрейфовом транзисторе по сравнению с бездрейфовым транзистором с той же толщиной базы W приблизительно вдвое.
Для дрейфовых транзисторов типа П401-П403 концентрация у коллекторного перехода в базе составляет около (1,5 - 3,0)·1016 см-3. При этом ширина коллекторного перехода имеет величину (в зависимости от напряжения) порядка 1,5-3,0 мкм. Предельная частота коэффициента переноса ƒβ этих транзисторов может составлять 250-400 Мгц.
Список использованных источников литературы
1. Викулин И. М., Стафеев В. И. Физика полупроводниковых приборов. - 2-е изд., перераб. и доп. - М.: Радио и связь, 1990.-264 с.
2. Спиридонов Н. С. Основы теории транзисторов <<Texнiка>>, 1969.- 300 с.
3. Степаненко И. П. Основы теории транзисторов и транзисторных схем -М.:”Энергия”, 1967.- 615 с.
4. Тугов Н. М. И др. Полупроводниковые приборы - М.:”Энергоатомиздат”, 1990. - 576 с.
5. Федотов Я. А. Основы физики полупроводниковых приборов. М.:”Советское радио”, 1970. - 592 с