Предложена [12] точная формула для расчёта числа типов волн, возбуждаемых в прямоугольном волноводе для произвольной полосы частот. Показано, что в пределе высоких частот полученная формула переходит в известное асимптотическое приближение. Проведено сравнение результатов расчёта числа типов волн по точной и асимптотической формулам.
Рассмотрено [13] применение конечно-разностных методов для расчёта диэлектрических волноведущих систем. Исследованы основные причины, препятствующие широкому использованию метода конечных разностей для расчёта открытых диэлектрических структур и волноводов с диэлектрическим наполнением. Указаны перспективные направления развития рассматриваемых методов.
В работе [14] излагается обзор современного состояния волноводной техники. Представлены частотные характеристики коэффициентов затухания в волноводах различных типов (круглых, прямоугольных, коаксиальных Н- образных). Дан также обзор конструкций устройств на волноводах с увеличенными размерами поперечного сечения: волноводных переходов, устройств для подавления волн высших типов .
В [15] даны результаты расчетов характеристик коэффициента затухания ряда типов волн в прямоугольных и круглых волноводах. Расчеты выполнены в приближении малых потерь. Результаты расчетов представлены в виде графиков зависимости нормированных коэффициентов затухания для 14 первых типов ТЕ и ТМ в прямоугольном волноводе и 15 в круглом от длины волны, нормированной к ширине прямоугольного волновода.
Изучены [16] общие закономерности формирования амплитудно-частотной характеристики симметричных волноводных или периодических резонаторов на основе выяснения их взаимосвязи с собственными частотами колебаний открытых структур. Исследовано влияние количества и местоположения собственных частот колебания одного или различных типов симметрии на частотные характеристики. Даны простые оценки зон наличия или отсутствия резонансов полного отражения и прохождения, добротности и величин смещения резонансов относительно реальных частей собственных частот.
При размерах систем сопоставимых с длиной волны излучения, распространяющихся в данной системе, проявляются квантовые эффекты, характерные для электромагнитных процессов происходящих в атомных и молекулярных системах для электромагнитных волн видимого диапазона, т.е. в оптике. В частности, поведение электрона в атоме водорода описывается на основе постулатов, т.е. утверждений, которые не могут быть доказаны, а воспринимаются как факт на основе экспериментальных результатов. Основным постулатом является утверждение о существовании стационарных орбит, на которых электрон не излучает, причем длина орбиты при этом равна длине волны электрона. Экспериментальную проверку данного постулата в оптике затруднительна, поскольку длина волны при этом весьма мала. Для радиотехнических систем, где длины волн имеют макроскопические размеры, постановка такого эксперимента вполне осуществима [16]. Эксперимент по поведению бегущих электромагнитных волн в замкнутой системе, длина которой кратна длине волны, описан в литературе как демонстрационный, хотя изучение поведения бегущих волн в замкнутых системах представляет и чисто практический интерес.
В настоящей работе проведено экспериментальное исследование поведения бегущих электромагнитных волн в волноводном тракте. Целью настоящей работы являлось исследование частотной зависимости амплитуды бегущей электромагнитной волны в кольцевом волноводном тракте. Для этого необходимо было решить следующие задачи:
1) определить оптимальные условия возбуждения бегущей электромагнитной волны в кольцевом тракте;
2) исследовать процесс образования стоячей волны в кольцевом резонаторе и получить соответствующие частотные зависимости;
3) получить частотные зависимости для процесса интерференции бегущих волн в кольцевом резонаторе.
1. Общие сведения о волнах
1.1 Волновой процесс
Термины «волна», «волновой процесс», употребляемые в физике и технике, получили широкое распространение. Под распространением волны понимается постепенное вовлечение среды в некоторый физический процесс, приводящее к передаче энергии в пространстве.
Пусть в какой-то области пространства наблюдается физический процесс, который в точке можно охарактеризовать функцией . В другой точке измерения величины в это же время, быть может, покажут отсутствие процесса. Но через какое-то время он будет передан средой, и мы отметим, что
В простейшем случае будет обнаружено лишь запаздывание процесса во времени, т. е. , где — время, требуемое для прохождения пути со скоростью . Пусть в пространстве существует зависимость только от одной координаты . Характеризующая процесс функция
(1.1)
построена при и при . Очевидно,.
Говорят, что функция (1.1) описывает волну. Иногда волны этого рода называют «недеформируемыми»; имеется в виду, что временной закон во всех точках пространства — с точностью до сдвига — одинаков. Волна называется плоской и однородной. Дело в том, что, положив, мы задаем плоскость, на которой мгновенное значение функции постоянно. Любую такую плоскость называют фронтом волны. В некоторый момент фронт, для которого движется вдоль оси со скоростью ,. Плоскую однородную волну, распространяющуюся в противоположном направлении, следует описывать при помощи выражения (1.1) с изменением знака
(1.1а)
Обратимся к однородному волновому уравнению
(1.2)
Если пользоваться декартовой системой координат и рассматривать только процессы, не зависящие от и , то волновое уравнение примет вид
(1.3)
Путем непосредственной подстановки нетрудно убедиться, что функции, выражаемые формулами (1.1) и (1.1а), являются решениями одномерного волнового уравнения (1.3).
Общее решение уравнения (1.3) выражает формула
(1.4)
где и — произвольные дважды дифференцируемые функции. Это наложение двух плоских однородных недеформируемых: волн, распространяющихся в противоположных направлениях.
1.2 Гармонические волны
Если в (1.1) взять такую функцию, что то в каждой точке пространства процесс будет иметь характер гармонических колебаний
или
(1.5)
Такого рода плоская однородная волна называется гармонической, а введенный параметр — волновым числом.
Как видно, полная фаза гармонических колебании в пространстве при заданном убывает пропорционально ; значения функции при этом периодически повторяются. Пространственный период называют длиной волны. Очевидно, для произвольного должно быть . Поэтому из (1.5) следует, что , т. е.
(1.6)
а также
(1.7)
где —частота процесса.
Чтобы составить, более наглядное представление о гармонической волне, положим сначала и получим т.е. функцию, характеризующую распределение величины вдоль оси в начальный момент . Эта косинусоида (кривая на рис. 1.2а) представляет собой как бы «мгновенный снимок» процесса. Выберем следующий фиксированный момент и для него запишем
где то есть не что иное, как расстояние, пройденное волной за истекшее время . «Мгновенный снимок», соответствующий моменту , дает, таким образом, косинусоиду, смещенную по оси на расстояние (кривая 2 на рис. 1.2а). Итак, распространение гармонической волны — это движение косинусоидального распределения и вдоль прямой с постоянной скоростью.
Плоская однородная гармоническая волна выражается одним из частных решений одномерного волнового уравнения (1.3). Метод комплексных амплитуд приводит (1.3) к виду
(1.8)
Это не что иное, как одномерная форма уравнения Гельмгольца. Его общее решение можно выразить следующей суммой:
(1.9)
( и —комплексные константы: и ).
Рисунок 1.2
Умножая комплексную амплитуду на и отделяя вещественную часть, находим
(1.10)
Это наложение двух гармонических волн, распространяющихся в противоположных направлениях. Гармоническая волна, движущаяся вдоль оси , возникает как частное решение при.
В качестве другого частного решения рассмотрим наложение бегущих навстречу волн с одинаковыми амплитудами и начальными фазами . При этом из (1.10) получаем
(1.11)
Такой процесс называется стоячей волной. Его отличительной особенностью является синфазность колебаний. Действительно, в каждой области постоянства знака множителя фаза зависит только от времени (это величина или ). В зависимости от косинусоидального изменяется амплитуда гармонических колебаний . Ряд «мгновенных снимков» процесса для разных моментов времени дает картину, показанную на рис. 1.2б; косинусоидальное распределение и вдоль оси не движется (в отличие от бегущей волны), а испытывает «пульсации». При этом расстояния между соседними неподвижными нулями (узлами) равны ; таковы же и расстояния между соседними максимумами (пучностями).
1.3 Поляризация и наложение волн
Для описания ориентации волны, распространяющейся в заданном направлении, существует понятие поляризации. Плоскостью поляризации называют плоскость, проходящую через направление распространения и параллельную вектору . Таким образом, всякое наложение двух волн с произвольными амплитудами и фазами есть также некоторая электромагнитная волна. Любая из плоскостей, проходящих через ось , может в равной мере быть плоскостью поляризации.
Существенно, что при распространении волны плоскость ее поляризации может и не оставаться неподвижной, т. е. волна может изменять свою ориентацию относительно направления распространения. Действительно, рассмотрим электрические поля двух ортогонально поляризованных волн одного направления и составим их наложение
(1.22)
Если фазы волн совпадают ( и ), то, как легко убедиться, наложение волн есть волна, поляризованная в неподвижной плоскости, составляющей угол с плоскостью поляризации первой волны. Это плоская, или линейная, поляризация.
Картина оказывается иной, если фазы налагающихся волн различны. Пусть, например, при одинаковых амплитудах () фазовое различие составляет . Полагая в (1.22) и , определим вектор как
(1.23)
Определяя угол , указывающий положение плоскости поляризации волны, имеем
(1.24)
т. е. угол наклона вектора к оси не остается постоянным в пространстве и времени, а равен . Как видно, в каждой фиксированной плоскости вектор вращается с угловой скоростью , а в фиксированный момент времени распределение поля вдоль оси таково, что конец вектора «скользит по винтовой линии». Это волна круговой поляризации, точнее, левой круговой поляризации. Правая круговая поляризация соответствует случаю и (вращение в противоположном направлении).
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9