Электромагнитные волны в волноводном тракте

Полагая Zн = ixн (чисто активная нагрузка), получаем


U(х) = Uн [ cos αх+ρ/xн sinαх] (2.30)

I(х) = Iн [ cos αх- xн /ρ sinαх]


Переходя к модулям амплитуд, будем иметь


 (2.31)


Из этих выражений видно, что при чисто реактивной нагрузке в линии устанавливаются так называемые стоячие волны напряжения и тока. В точках, отстоящих от конца на расстояниях которых αx-φ1 = 0,π,2π ...., |соs(αх-φ1)| обращается в единицу, |sin(αx -φ1)| - в нуль, амплитуда напряжения , достигает своего максимума, а амплитуда тока равна нулю. Эти точки соответствуют пучностям напряжения и узлам тока. В точках где αx-φ1=π/2,3π/2,5π/2... и так далее, наоборот, устанавливаются узлы напряжения и пучности тока.

Заметим, что входное сопротивление линии при стоячих волнах имеет характер чисто реактивного сопротивления.


 (2.32)


Из этого следует, что в любом сечении линии напряжение и ток сдвинуты по фазе на угол 90 градусов. Из (2.32) видно, что в пучностях соответственно напряжения и тока амплитуды равны


 (2.33)

 (2.34)


Если умножить обе части последнего выражения на ρ, то получим


(2.35)


При стоячих волнах максимальные амплитуды напряжения и тока связаны простым соотношением


Uмакс=Iмаксρ (2.36)


Интересно также установить связь между амплитудой в пучности и амплитудой падающей волны. Можно написать следующее выражение для напряжения на конце линии:


Uн = Uпад + Uотр = Uпад(1 + Г) (2.37)


С учетом Г находим окончательно Uмакс= 2Uпад.Аналогично можно показать, что Ιмакс= = 2Ιпад . Итак, при чисто реактивной нагрузке амплитуды в пучностях равны удвоенному значению амплитуды падающей волны. Физический смысл этого результата становится очевидным, если учесть, что образование стоячей волны является результатом интерференции падающей и отраженной волн.

Так как модуль коэффициента отражения при чисто реактивной нагрузке равен единице, то амплитуды отраженной и падающей волн одинаковы. При распространении вдоль линии во взаимно противоположных направлениях эти волны удваиваются по амплитуде в точках, где их фазы совпадают (пучности), и взаимно уничтожаются в точках, где сдвиг фазы равен 180° (узлы). Из предыдущего ясно, что режим чисто стоячей волны возможен лишь в линии без потерь.

Рассмотрим еще вопрос о распределении энергии электромагнитного поля вдоль линии со стоячей волной. Для этого выделим с помощью двух параллельных плоскостей, перпендикулярных к оси линии, пространство, связанное с элементом линии длиной Δx, и составим выражение для энергии магнитного и электрического поля в указанном пространстве. Если амплитуда тока в рассматриваемом элементе линии I(х),а напряжение U(x), то, очевидно, мгновенное значение энергии магнитного поля будет

 (2.38)


а мгновенное значение энергии электрического поля


 (2.39)


При составлении этих выражений учтено, что при стоячей волне напряжение и ток сдвинуты по фазе на 90°. Начальная фаза θ может иметь произвольную величину и для рассматриваемого здесь вопроса значения не имеет.

Суммируя полученные энергии, находим



Таким образом, приходим к выводу, что при чисто стоячей волне средняя энергия электромагнитного поля (на единицу длины) не изменяется вдоль линии. Имеет место лишь перераспределение энергии между магнитным и электрическим полем. В пучностях напряжения вся энергия запасена в электрическом поле (магнитное поле отсутствует), а в пучностях тока — в магнитном поле (электрическое поле отсутствует).


2.7 Типы волноводных систем


Линии передачи миллиметрового (ММ) и субмиллиметрового (СБМ) волн являются и объектом и средством измерений. В первом случае необходимо знать электродинамические характеристики линий, передающих сигнал на ММ и СБМ волнах. Во втором случае линии передачи используются для измерения характеристик вносимых в них объектов (например, диэлектрических образцов).

В ММ и СБМ диапазонах волн применяются следующие типы волноводных систем: полые металлические волноводы; металлодиэлектрические волноводы; диэлектрические, в том числе диэлектрические полосковые волноводы; квазиоптические лучеводы; микрополосковые линии. Основным отличием полых металлических волноводов ММ и СБМ волн от волноводов, применяемых в СВЧ диапазоне, является то, что они, как правило, являются многомодовыми. Это обстоятельство значительно затрудняет как разработку и создание самих линий передач, так и измерение основных их характеристик. Такими характеристиками являются: постоянные распространения γj=βj-ιαj (βj и αj — фазовая постоянная и постоянная затухания волны j-го типа соответственно); относительный уровень мощности j-й волны; частотная и фазовая характеристики линии; Kст; предельная мощность и др.

Точность измерения этих характеристик определяется в первую очередь требованиями, предъявляемыми к конкретному тракту: в одном случае главным является обеспечение минимальных потерь, в других— заданной структуры поля, максимума передаваемой мощности:, равномерности фазовой характеристики и т. д.

Рассмотрим основные свойства многомодовых волноводов. Распределение электрического и магнитного полей волны в любом поперечном сечении волновода при z = const неизменно, а происходит лишь изменение амплитуды и фазы волны по закону Ej(x,y,z)=AjEj(x,y)e-iγjz, где Aj- амплитуда волны j-го типа. Расчет значения αj практически всегда приводит к несоответствию с измеряемой величиной затухания [17]. Поэтому даже в регулярном волноводе ММ и СБМ диапазона практически всегда необходимы измерения потерь αj, а иногда величин βj, Ej или Нj. [17]

Реальные тракты всегда имеют ряд специально вводимых или случайных нерегулярностей. Первые связаны с использованием измерительных элементов, таких как аттенюаторы, фазовращатели, модуляторы, переходы с одного сечения волновода на другое, делители мощности, детекторные секции и т. д.

Случайные нерегулярности возникают из-за неидеальности геометрии волноводов, а также их соединения и крепления. Следует отметить, что с укорочением длины волны случайные нерегулярности вносят все больший вклад как в значение вносимых потерь, так и в эффективность преобразования основной моды в высшие [17].

Известно [18], что в одномодовом волноводе любые нерегулярности вызывают только отражение рабочей волны. В многомодовом волноводе любая нерегулярность вызывает также искажение амплитудного распределения поля волны [19, 20], что обусловлено преобразованием основной моды в высшие моды.

Преобразование мод имеет важную особенность — преимущественное возбуждение на нерегулярностях мод того же направления распространения, что и возбуждающая мода [отношение амплитуд прямой и обратной мод индекса i равно (βj+βi)/(βj-βi)]. Кроме того, наибольшие амплитуды имеют моды с близкими к рабочей моде фазовыми постоянными. В случае распределенных нерегулярностей наиболее эффективное возбуждение моды индекса i имеет место, когда Сji пропорционально cos βjiz, т. е. когда нерегулярности имеют косинусоидальную зависимость от z с периодом, равным длине волны биений (λij=2π/βji) между j-й и i-й модами [21].

В ММ диапазоне волн широкое распространение получили одномодовые и многомодовые (прямоугольные и круглые) волноводы, а в СБМ диапазоне — только многомодовые волноводы.

Прямоугольные волноводы. Для одномодового режима работы необходимо выполнение условий: 2a>λ0>a, 2b<λ0 (а и b — размеры широкой и узкой стенок волновода). Для основной волны H10 фазовая постоянная β10 и постоянная затухания α10 определяются выражениями:


β10=[k20-(π/a)2]1/2 (2.40)

α10=(πcε0/λ0σ)1/2*[(1+2(b/a)(λ0/2a)2)/(b[1-(λ0/2a)2]1/2)]


где к0 = 2π/λ0; с — скорость света в вакууме; σ — проводимость, См/м; ε0= 8,86- 10-12 Ф/м — диэлектрическая проницаемость вакуума.

В одномодовых волноводах обычно а = 2b. При этом условии и при σ=5,4* 107 См/м (медь) по указанной формуле можно определить потери на проводимость в стенках волновода.

Измеренные значения потерь обычно в 1,5—2 раза превышают расчетные, причем с укорочением длины волны наблюдается все большее несоответствие расчетных и измеренных потерь [21]. Этот факт обусловлен шероховатостью стенок волновода и наличием на них пленки окислов.

С укорочением длины волны резко возрастают и требования к допускам на размеры волноводов и точности их стыковки. Коэффициенты отражения от различных дефектов, возникающих при стыковке волноводов, могут быть оценены по приближенным формулам, приведенным в [18]. Так, при допусках на размеры а и b, равных δ, коэффициент отражения от стыка двух волноводов при a=2b, |Г|∆=4δ/a.

При смещении волноводов в контактной поверхности стыка на ∆а или ∆b


|Г|∆a≈0,9∆a/a, |Г|∆b≈0,3∆b/b


Коэффициент отражения на изломе оси на угол θ в стыке |Г|θ = 3*10-3θ.

Многомодовые волноводы. В многомодовом режиме потери при работе на волне Н10 малы. При условии а>>λ0, b>> λ0 и b<<2а3/ λ02 из (67) следует, что α~1/b. Это означает, что наименьшие потери можно получить в многомодовом волноводе, у которого размер b>а, когда вектор напряженности электрического поля распространяющейся волны перпендикулярен стенке с размером а. Однако при b>а увеличивается возможность возникновения высших мод. Это может привести не только к увеличению суммарных потерь, но и к значительной осцилляцией ной зависимости этих потерь от частоты. Кроме того, при наличии в измерительном тракте на многомодовых волноводах переходов с одного сечения волновода на другой возможно возникновение резонансов, обусловленных переотражением паразитных мод от критических сечений [18, 19]. При резонансе коэффициент пропускания умножается на фактор Dj==Lj/( Lj+ηj), Dj>1, Lj — потери на преобразование основной волны в j-ю волну высшего типа; ηj - затухание j-й волны. При Lj> ηj Dj<<1 .

Коэффициенты преобразования волны Н10 в волны Нm0 имеют вид: Вm0=2π2m∆а/β20(β20- β10)a3.

Наибольшее значение имеет коэффициент преобразования волны Н10 в волны Н11, Е11. При этом происходит распространение смешанной волны, представляющей линейную комбинацию волн Н11 и Е11.

Коэффициент преобразования волны Н10 в Hmn- или Emn- волны при изломе оси на угол ∆θ определяется из выражения [18]: Bij = Fji∆θ, где коэффициенты Fji даны в [18].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать