Гідродинамічне глісування

Хоча існуючий підхід розроблений для тривимірного глісування, двовимірні задачі можна розглядати, як тривимірні з високим відносним подовженням. Теоретично, дана теорія може застосовуватися до тривимірних глісуючих поверхонь довільних профілів, з заданими змоченими площами. У більшості випадків, однак, змочена площа глісуючого корпусу невідома заздалегідь і з цієї причини в даній теорії застосований зворотний метод, у якій змочена площа запропонована заздалегідь, у той час як профіль транцю визначений як частина рішення.

Автори нехтували нелінійне явище бризку передньої кромки, оскільки вона має маленьку товщину і робить незначний внесок у розподіл тиску в області бризку. Фактично, це - високий тиск в області бризку, тобто, в області передньої кромки, яка створює бризок.

Проблема, пов’язана з глісуванням полягає в тому, що змочена площа корпуса невідома до того, коли визначається гідродинамічна сила. Хоча, для того, щоб вирішити цю проблему можна застосувати процедуру повторення. Але це займає багато часу і в результаті можна отримати коливальний розподіл тиску, який знайшов Докторс (1975). Тому була запропонована змочена площа корпусу, який спроектовано на середину вільної поверхні, у той час як глибина занурення та форма транцю позначені як невідомі. Використання умови Кута на кромці транцю забезпечило додаткові рівняння, які використовувалися для визначення форму кромки транцю. Недолік цього підходу полягає в тому, що запропонована змочена площа не може дати точну форму транцю. Для даного глісуючого корпусу, обчислення повинні бути виконані для ряду запропонованих змочених площин, а інтерполяція повинна проводитися так, щоб отримати рішення для корпуса.

Проведені в роботі числові обчислення для глісуючих поверхонь двовимірної плоскої пластини, параболічної пластини, кубічної пластини і тривимірної плоскої пластини дали результати, які при порівнянні з експериментальними даними або іншими теоріями показали вдалість даного підходу для досягнення збіжності рішень без накладання будь-яких обмежень на відносне подовження або на число Фруда. [4]


1.3 Двовимірна теорія глісування


Двовимірне глісування характеризується гладеньким відокремленням водного потоку на задній кромці глісуючої поверхні і бризканням на передній кромці змоченої частини глісуючої поверхні. Відокремлення потоку відповідає потоку на передній кромці в класичній теорії повітряного крила.

Бесшо і Коматсу проаналізували двовимірну неустановлену задачу плоскої глісуючої поверхні, базуючись на теорії повітряного крила. Відповідно до цієї теорії вага глісеру при русі на великих швидкостях підтримується насамперед гідродинамічним підйомом, який виникає на його нижній стороні, а не гідростатичною плавучістю. [5]

Явище глісування має багато аналогій із проблемами аеродинамічного підйому крил, і таким чином багато досліджень глісування є подібними до досліджень потоку навколо повітряного крила. Однак, присутність вільної поверхні вносить два важливих ефекти, які не можуть ігноруватися в повному обчисленні глісування: по-перше, велика відстань вверх за течією - дуже спеціальний початковий рівень, висота незбуреної вільної поверхні, на якій визначає спеціальний напрямок течії: тиск постійний вздовж кожного з цих напрямків; по-друге, внизу за течією глісуючої поверхні виникатимуть гравітаційні хвилі, які не мають ніякого аналога в аеродинамічній задачі. Навіть перший із цих ефектів, існування єдиної горизонтальної поверхні вверх за течією, є наслідком існування гравітаційності, іншими словами не має вільної поверхні. Вплив гравітації на вільному потоці в окружності глісуючого човна ймовірно досить незначний, і можна припустити, що існування хвиль за човном мало впливає на нелінійний потік біля човна. У двовимірних задачах, відомо, що цей підхід веде до неприємності: рішення проблеми вільного напряму не єдине і жоден з можливих рішень не має прийнятного поводження на нескінченності; вони всі передбачають, що вільна поверхня зменшується, знижується логарифмічно далеко вверх за течією й далеко вниз за течією.

Не єдиність - загальна особливість потоків Гельмгольця. Для включення гравітаційності у двовимірну задачу було зроблено багато спроб. Більшість цих спроб було зроблено в межах структури лінеаризованої водної теорії хвилі. Якщо кут атаки глісуючої поверхні надзвичайно маленький, Вагнер показав, що нелінійність біля точки застою могла бути зосереджена в сингулярність, і струя (або бризок) кинута вперед може ігноруватися, тому що її товщина зменшується із квадратом кута атаки. При великих числах Фруда ця задача була проаналізована неодноразово протягом декількох десятиліть.[6] Для не таких маленьких кутів атаки проблема швидко стає занадто нелінійною для апроксимації повністю лінійними теоріями, навіть із включенням сингулярності для врахування нелінійних ефектів.[7]

Практичне застосування двовимірної теорії глісування обмежені, але мають місце. Наприклад - злет гідролітака. Протягом короткого часу, безпосередньо перед тим, як гідролітак відривається від води водний потік майже двовимірний. Передбачається, що відносне подовження прямує до нескінченності, оскільки змочена довжина прямує до нуля. Відмічалось, що цей короткий проміжок часу критичний при злеті, оскільки потік очевидно нестійкий. [8] Експериментальні результати дослідження цієї нестійкості представив Мотард.[9] Гідродинамічні характеристики невстановленого руху також дуже важливі для проектування суден.

Усталеним двовимірним глісуванням плоскої пластини займалися багато вчених. Грін вирішив цю задачу для кінцевого кута атаки без врахування гравітаційності. Нехтування гравітаційності приводить до аномальних результатів відокремлення вільної поверхні в дальній області пластини. В рішення Гріна відокремлення вільної поверхні логарифмічно направлене в нескінченність. При великих числах Фруда ефект гравітаційності приймається маленьким в ближній області, але аномалія в дальній області все ж залишається. Нехтування ефектами гравітаційності в ближній області розглянуто Шеном та Огільві (1971).

Теорія запропонована авторами [8] - узагальнена теорія Сєдова [2]. Вона базується на часовому аналізі. Це передбачає, що вхід у воду і переміщення пластини при великих числах Фруда може бути проаналізовано в межах даної теорії. Двовимірна гідродинамічна крайова задача глісування плоскої пластини представляє собою задачу входу в воду, вважаючи передню швидкість U великою. Відносно пластини передня швидкість має вигляд швидкості вільного потоку. Граничні умови тіла при цьому переносяться до прямої горизонтальної лінії.

Різноманітні задачі водного руху з врахування гравітаційності розглянуто в [6]. Окрім того, майже у всіх представлених випадках враховано наявність поверхні, яка розділяє дві рідини з різною питомою вагою, або, якщо присутня тільки одна рідина, так звані вільні поверхні.

Для вирішення задачі використовується прямокутна система координат. Вісь Y приймається направлена протилежно до сили тяжіння, осі х і z утворюють правобічну систему координат. Для отримання рівняння руху виконують диференціювання фундаментальних рівнянь, які описують водний рух. Математична модель складається з граничних умов - граничних умови на поверхні розділення (динамічні та кінематичні умови), граничних умов на твердій поверхні та інших граничних умов, які включають в себе геофізичні умови, тобто умови, які передбачають наявність поверхні розділення між рідиною та пружним середовищем. Наприклад, вивчення ефекту океанських хвиль, наявність крижаного покриву або на поверхні розділення між двома рідинами, які відокремлені одна від іншої пружною мембраною чи пластиною. Кінематична гранична умова повинна виконуватись завжди. Динамічні умови залежать від природи припущень.

Більшість теорій водних хвиль займаються або поясненням деяких загальних видів хвильового руху, або передбаченням поведінки хвиль. Нажаль, навіть деякі з найпростіших задач виявились надто складними для вирішення в більш повній формуліровці. Для вирішення цих задач часто використовуються методи апроксимації. Апроксимації необхідні і в багатьох випадках вирішені ті задачі, які можна вирішити наближеними методами.

Задачі гідродинаміки можна класифікувати по видах припущень. Спочатку робиться припущення відносно властивостей рідини: в’язка чи нев’язка, зжимаєма чи незжимаєма, присутній чи відсутній поверхневий натяг. Припущення рідини нев’язкою, незжимаємою та без поверхневого натягу спрощують рівняння. Далі використовуються інші апроксимації, так звані - математичні апроксимації. Їх значення знаходиться не в обмеженні природи рідини, а в обмеженні кількості хвиль та граничної конфігурації. Вид математичної апроксимації дає інший спосіб класифікації задач - апроксимація нескінченно малої хвилі та апроксимація мілкої води. [6]



2 Вплив форми профілю на вирішення основних гідродинамічних задач

Окрім припущень та умов до хвильової поверхні увага також звертається і на форму профілю, який рухається по поверхні. Так, найчастіше для спрощення задачі використовується плоска пластина. Більш загальний випадок глісування можна отримати, якщо пластину замінити дугою з невеликою випуклістю або опуклістю. Що стосується тривимірних задач, то тут розглядаються більш складні форми глісуючої поверхні - у вигляді тривимірних фігур - конусоподібні, шарові, призматичні та ін.

Робота [10] присвячена випадку круглої глісуючої поверхні. Крила з дійсно круглою формою глісуючої поверхні не є зогальною задачею в аеронавтиці або гідродинаміці. В роботі увага акцентується головним чином на аналітичних та числових результатах для тонких, непроникних поверхонь круглої форми.

Більше уваги приділяється дослідженням ефекту наявності випуклості на днищі судна. Тулін (1957) показав, що головні особливості нев’язкого потоку поблизу тонкої, плоскої поверхні при великій швидкості гарно апроксимуються теорією тонкого тіла для отримання кінцевих швидкостей по ватерлініям. Окрім того, він показав, що наявність килеподібної випуклості на пластині приводить до бризкового опору, а нев’язкий опір плоских, тонких глісуючих пластин складається з індуктивного опору та бризкового опору, які рівні між собою при відсутності випуклості. Тулін представив результати, які показали, що бризковий опір є функцією форми судна та продольної випуклості, кривизни та куту поширення. Його параметричні оцінки вказали, що тупі носові частини з кормою з великою кривизною випуклості дадуть найменш нев’язкий опір. Але неврахований Туліном опір тертя дав нереалістичне зображення відносного впливу бокових вертикальних форм на повний опір. [11]

Більш складна задача, пов’язана з дослідженням гідродинамічних параметрів глісуючого корпусу при наявності випуклості на днищі, розглянута в [12]. Корпус, в цій роботі, представляв собою призматичну поверхню.

Страницы: 1, 2, 3, 4, 5, 6, 7



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать