Очевидно, что при таком количестве основных закономерностей нет надежды на создание аналитического теоретического описания процесса нелинейной ионизации атомов. Соответственно в принципе имеются лишь две возможности – развитие метода численного расчёта для фиксированных значений параметров, характеризующих атом и поле излучения, или развитие приближённых методов аналитического описания, справедливых лишь в определённой области изменения основных параметров, или при пренебрежении теми или другими основными закономерностями.
Помимо указанных выше основных закономерностей, укажем ещё ряд существенных моментов, которые определяют характер теоретического описания процесса нелинейной ионизации атомов.
Теоретические методы изучения взаимодействия электромагнитного излучения с атомами основаны на тех или иных приближениях для решения уравнения Шредингера для системы « атом + поле излучения». Так как поле электромагнитного излучения включается и выключается, то нестационарное уравнение Шредингера с начальным условием, соответствующим отсутствию электромагнитного поля, представляет собой задачу Коши (т.е., задачу нахождения решения уравнения, удовлетворяющего определённым начальным условиям). Ее решение раскладывается по невозмущенным собственным волновым функциям системы после включения поля, и определяются вероятности различных переходов. При этом поле электромагнитного излучения предполагается классическим, что соответствует реальной постановке экспериментов по взаимодействию лазерного излучения с атомарными системами [2].
2.5 Выводы по главе 2
1. Анализ литературных источников показал, что существующие работы, посвященные пробою жидкостей, не имеют полной теории пробоя жидкостей. Основные электрические свойства жидкостей, по-видимому, определяются «ближним порядком», т.е. характером взаимодействия молекул с ближайшими соседями, как это имеет место у полупроводников.
2. Несмотря на трудности связанные с отсутствием полной теории пробоя жидкостей, были установлены закономерности пробоя. Основными процессами электрического пробоя жидкости в начальной стадии являются многофотонная ионизация каскадная, или лавинная ионизация. Первые электроны появляются благодаря зависящему от частоты туннельному эффекту, на высоких частотах туннельный механизм эквивалентен многофотонной ионизации.
3. Установлено, что пробой с помощью лазерного излучения можно получить, используя фотохимические вещества либо за счет нелинейной ионизации вещества.
4. Основными параметрами, влияющими на характер взаимодействия лазерного излучения с веществом, являются:
· потенциал ионизации вещества;
· интенсивность лазерного излучения.
·
3Физико-математическая модель процессов ионизации вещества под воздействием лазерного излучения
3.1 Набор энергии электроном в осциллирующем поле
Чтобы ионизовать атом, электрон должен приобрести от поля энергию, равную как минимум потенциалу ионизации I. Строго говоря, при излучении в видимом диапазоне этот процесс имеет квантовый характер. Однако, как мы увидим ниже, с определенными оговорками его можно описать и на основе простых классических (неквантовых) представлений, и это дает правильные результаты. Поэтому рассмотрим, как электрон набирает энергию в поле электромагнитной волны. Как показывают оценки, амплитуда колебаний электрона в световом поле гораздо меньше длины волны, поэтому, рассматривая осцилляции электрона под действием переменного электрического поля волны, последнее можно считать однородным в пространстве и осциллирующим только во времени:
;
Под действием электрической силы (магнитная мала) электрон совершает вынужденные колебания на фоне поступательного движения с какой-то скоростью. В результате рассеяния при упругих столкновениях с атомами направления движения электрона каждый раз изменяются резко и случайным образом, поэтому поступательное движение является хаотическим. Фиксируя внимание на неком "среднем" электроне, то есть усредняя движение всех электронов, можно исключить из рассмотрения хаотическое движение, средний вектор скорости которого равен нулю, и составить уравнение движения для чисто колебательной скорости V [7].
Она меняется во времени под действием электрической силы — eE(t) и в результате потери направленного импульса в актах рассеяния. В случае изотропного закона рассеяния электрон при столкновении в среднем теряет свой импульс mV полностью, значит, в 1 секунду он теряет в среднем .
где— частота упругих столкновений. N -плотность атомов, — средняя скорость хаотического движения, которая обычно много больше колебательной; - эффективное сечение рассеяния. При неизотропном законе рассеяния следует пользоваться так называемым транспортным сечением, где — средний косинус угла рассеяния, и соответствующей эффективной частотой столкновений , которые мало отличаются от и . Уравнение колебательного движения электрона с учетом указанных потерь и импульса среде (трения)
, (3)
легко интегрируется и дает
, , (4)
При отсутствии столкновений, при =0, электрон колеблется с амплитудами скорости u= и смешения . Столкновения мешают электрону приобрести полный размах колебаний, так как каждый раз. "недобрав" полные амплитуды u и , электрон резко меняет направление своего движения и начинает раскачиваться заново. Поэтому амплитуды скорости и смешения при увеличении частоты столкновений уменьшаются.
За одну секунду поле совершает над электроном работу
;
где знаком обозначено усреднение по времени, то есть за период колебаний. Эта работа идет на увеличение кинетической энергии электрона , в основном энергии его хаотического движения, которая скоро становится гораздо больше энергии колебательного движения . Проделывая с помощью формулы (5) для операцию усреднения, найдем скорость набора энергии в осциллирующем поле
, (5)
где - среднеквадратичное электрическое поле в волне.
Рассматривая процесс набора энергии электроном в поле световой волны с квантовых позиций (электрон поглощает и вынужденно испускает световые кванты при столкновениях с атомами), можно показать, что средняя скорость набора энергии в поле фотонов выражается той же формулой (6). где поле Е связано с плотностью потока фотонов F естественным соотношением . Формула оказывается справедливой не при жестком условии, что среднее приобретение энергии при столкновении , а при более мягком условии, что сама средняя энергия . Но средняя энергия электронного спектра при пробое сравнима с потенциалом ионизации, иначе ионизационный процесс не мог бы протекать столь быстро. Потенциал ионизации составляет, как мы видели, много квантов, поэтому неравенство в самом деле можно считать выполненным [2].
Поле связано с интенсивностью соотношением
, В/см (6).
Скорость дрейфа электронов приблизительно равняется:
,
; (7)
где - подвижность связана с коэффициентом диффузии электронов соотношением.
3.2 Модель келдыша – файсала – риса
Исходная модель Келдыша. Цель этого раздела состоит в аналитическом приближенном решении нестационарного уравнения Шредингера, описывающего поведение атомарной системы во внешнем электромагнитном поле:
, (8)
Здесь - невозмущенный гамильтониан атомарной системы, а величина представляет собой потенциал взаимодействия атомарной системы с внешним электромагнитным полем. Предполагаются известными собственные функции и собственные значения энергии стационарного гамильтониана:
, (9)
Точное выражение для амплитуды перехода из начального связанного состояния атома или атомарного иона i в конечное состояние непрерывного спектра f под действием поля лазерного излучения имеет следующий вид ( напомним, что всюду используется атомная система единиц, в которой постоянная Планка, масса электрона и его заряд предполагаются равными единице):
, (10)
Здесь конечное состояние описывается точной волновой функцией . Выражение (10) эквивалентно исходному нестационарному уравнению Шредингера (8).Вероятность связанно-свободного перехода за время t дается квадратом модуля выражения (10).
Начальное состояние дискретного спектра атома в (10) является невозмущенным и берется из решения уравнения (9).Взаимодействие атома с электронным полем бралось Келдышем в дипольном приближении (так как размеры атома малы по сравнению с длиной волны электромагнитного излучения), используя так называемую калибровку «длины»
, (11)
Здесь F – вектор напряженности электромагнитного поля электромагнитной волны. Предполагалось, что это поле мало по сравнению с характерным атомным полем рассматриваемой атомной системы [2].
Основная идея Келдыша заключалась в том, чтобы заменить неизвестную точную волновую функцию конечного состояния на так называемую волковскую волновую функцию, в которой пренебрегается полем атомного остова и учитывается только поле электромагнитной волны. В калибровке длины этой волновая функция имеет следующий вид
, (12)
Здесь векторный потенциал электромагнитного поля связан с напряженностью поля известным соотношением
, (13)
Указанная волновая функция (11) описывает электрон, колеблющийся в поле электромагнитной волны и имеющий канонический импульс . Средняя (за период колебаний) энергия колебаний Eкол электрона в поле монохроматической электромагнитной волны с частотой равна (для поля линейной поляризации) или (для поля циркулярной поляризации).