Положение механизма |
|||||||
– вкт |
5,60 |
2,80 |
0 |
0 |
0 |
58,81 |
2,35 |
– х.х. |
2,21 |
1,11 |
20,46 |
1,16 |
0,05 |
39,05 |
1,56 |
– р.х. |
3,05 |
1,52 |
19,63 |
1,07 |
0,04 |
17,82 |
0,71 |
Положение механизма |
|||||
– вкт |
128,79 |
5,15 |
1,40 |
7,32 |
2,61 |
– х.х. |
39,51 |
1,58 |
1,74 |
1,66 |
1,74 |
– р.х. |
75,01 |
3,00 |
0,75 |
3,95 |
0,79 |
4. Кинетостатический расчет механизма
4.1 Определение сил инерции звеньев
Для рассматриваемого механизма чеканочного пресса заданы:
- массы звеньев , и (массы звеньев 1 и 4 не учитываются);
- положения центров масс звеньев – координаты точек и;
- моменты инерции и .
При определении сил инерции и моментов сил инерции воспользуемся построенным планом ускорений для нахождения ускорений центров масс звеньев и угловых ускорений звеньев для рабочего хода механизма:
- ускорения центров масс , и возьмем из таблицы результатов:
, , .
- определение угловых ускорений звеньев и также приведено при построении плана ускорений:
, .
Теперь рассчитаем модули сил инерции:
- звено 2 совершает плоскопараллельное движение:
;
;
- звено 3 вращательное движение:
;
;
- звено 5 совершает поступательное движение вдоль неподвижной направляющей:
.
Силы инерции , , приложены в центрах масс , звеньев и направлены противоположно соответствующим ускорениям ,,. Моменты сил инерции и по направлениям противоположены соответствующим угловым ускорениям и .
На схеме механизма в рассматриваемом рабочем положении показаны векторы сил инерции , , и моменты сил инерции , . Здесь же штриховыми линиями показаны линейные ускорения центров масс ,, и угловые ускорения и .
4.2 Определение реакций в кинематических парах и уравновешивающей силы на кривошипе
Определение реакций в кинематических парах следует начинать с той группы Ассура, для которой известны все внешние силы. Такой группой является последняя присоединенная группа Ассура 2 вида, состоящая из звеньев 4, 5.
Рассматриваем группу 4-5. На данную структурную группу действуют следующие силы и моменты: , ,. Действие отброшенных звеньев (стойки 0 и кулисы 3) заменяем реакциями и , которые необходимо определить.
Величина и точка приложения реакции в поступательной паре неизвестны, поэтому точка приложения этой реакции (расстояние ) выбрано произвольно. Линия действия реакции без учета трения перпендикулярна направляющей этой пары. Реакция во вращательной паре неизвестна по величине и направлению. Без учета трения эта реакция проходит через центр шарнира. Разложим реакцию на две составляющие:
Нормальная составляющая действует вдоль звена 4: , тангенциальная составляющая действует перпендикулярно звену 4: .
Требуется также определить реакцию во внутренней вращательной кинематической паре группы (или ), которая без учета трения проходит через центр шарнира . Для упорядочения расчетов по определению реакций составляем таблицу с указанием очередности определения сил, а также уравнений, посредством которых они будут определяться.
Таблица
№ п/п |
Искомая величина |
Вид уравнения |
Звено, для которого составляется уравнение |
1 |
5 |
||
2 |
4 |
||
3 |
, |
4, 5 |
|
4 |
(или ) |
4 (или 5) |
Запишем уравнения, указанные в таблице, в развернутом виде.
1. Расстояние , определяющее точку приложения реакции , найдем из уравнения моментов для звена 5:
, откуда .
В данном случае можно было заранее сказать, что плечо =0, так как все остальные силы, действующие на звено 5, проходят через центр шарнира , следовательно, и реакция должна проходить через этот центр.
2. Для определения реакции составляем уравнение моментов всех сил, действующих на звено 4, относительно точки :
откуда .
В данном случае можно было заранее сказать, что реакция , так как все на звено 4 не действует никаких внешних нагрузок и, следовательно, реакция должна быть направлена вдоль звена.
3. Для определения нормальной составляющей и реакции составляем уравнение статического равновесия сил, действующих на звенья 4 и 5:
Силы, известные по величине и направлению, подчеркиваем двумя чертами, силы же, известные по направлению – одной чертой.
При составлении векторной суммы сил удобно силы, неизвестные по величине, писать в начале и в конце уравнения, чтобы при построении плана сил было проще пересечь их известные направления. Кроме того, при построении плана сил для всей группы рационально силы, относящиеся к одному звену, наносить последовательно друг за другом, т.е. группировать силы по звеньям, так как это упростит в дальнейшем определение реакции во внутренней кинематической паре.
Отрезки, изображающие известные силы на плане, определяем с учетом принятого масштабного коэффициента , который выберем по силе резания:
,
где – сила сопротивления,
– отрезок в , изображающий эту силу на плане сил.
Из произвольной точки в последовательности, указанной в уравнении, откладываем все известные векторы, начиная с . Далее через начало вектора проводим направление нормальной составляющей реакции параллельно звену , а через конец вектора - направление реакции перпендикулярно оси . Точка пересечения этих направлений определяет вектора, изображающие в выбранном масштабе реакции и . Стрелки всех векторов должны соответствовать одному и тому же направлению обхода контура плана сил.
;
.
Полная реакция
, т.е. .
4. Для определения реакции составляем уравнение равновесия сил для звена 4:
.
Реакция неизвестна ни по величине, ни по направлению. Очевидно, что она равна по величине и противоположна по направлению реакции . Построение показано пунктиром.
.
Реакция на звено 5 со стороны звена 4 равна по величине реакции и противоположна ей по направлению.
Рассмотрев группу Ассура, состоящую из звеньев 4 и 5, переходим к следующей группе – 2ПГ 3 вида, состоящей из звеньев 2 и 3.
Рассматриваем группу 2-3: На данную структурную группу действуют следующие силы и моменты: . Реакция на звено 3 со стороны звена 4 равна по величине реакции и противоположна ей по направлению . Приложена эта реакция в точке звена 3. Освободив группу 2-3 от связей, прикладываем вместо них две реакции в шарнире и в шарнире , неизвестные по величине и направлению.
Разложим реакцию на две составляющие:
Нормальная составляющая действует вдоль звена 3: , тангенциальная составляющая действует перпендикулярно звену 3: .
Реакцию в шарнире также разложим на составляющие:
.
Нормальная составляющая действует вдоль звена 2: , тангенциальная составляющая действует перпендикулярно звену 2: .
Требуется также определить реакцию во внутренней кинематической паре (или ). В 2ПГ 1 вида внутренняя кинематическая пара – вращательная.
Для упорядочения расчетов по определению реакций составляем таблицу с указанием очередности определения сил, а также уравнений, посредством которых они будут определяться.
Таблица
№ п/п |
Искомая величина |
Вид уравнения |
Звено, для которого составляется уравнение |
1 |
3 |
||
2 |
2 |
||
2 |
, |
3, 2 |
|
3 |
(или ) |
2 (или 3) |
Запишем уравнения, указанные в таблице, в развернутом виде.
1. Для определения реакции составляем уравнение моментов всех сил, действующих на звено 2, относительно точки :
откуда
Знак "+" означает, что действительное направление силы соответствует первоначально выбранному.
2. Для определения реакции составляем уравнение моментов всех сил, действующих на звено 2, относительно точки :
откуда
Знак "+" означает, что действительное направление силы соответствует первоначально выбранному.
3. Для определения нормальной составляющей и реакции составляем уравнение статического равновесия сил, действующих на звенья 3 и 2:
Силы, известные по величине и направлению, подчеркиваем двумя чертами, силы же, известные по направлению – одной чертой.
Отрезки, изображающие известные силы на плане, определяем с учетом ранее принятого масштабного коэффициента
.
Из произвольной точки в последовательности, указанной в уравнении, откладываем все известные векторы, начиная с . Далее через начало вектора проводим направление нормальной составляющей параллельно звену, а через конец вектора - направление реакции параллельно звену . Точка пересечения этих направлений определяет вектора, изображающие в выбранном масштабе реакции и . Стрелки всех векторов должны соответствовать одному и тому же направлению обхода контура плана сил.
;
.
Полную реакцию получим, соединив начало вектора с концом вектора , а значение можно определить, пользуясь формулой:
.
Полную реакцию получим, соединив начало вектора с концом вектора , а значение можно определить, пользуясь формулой:
.
4. Для определения реакции составляем уравнение равновесия сил для звена 2:
.
Реакция неизвестна ни по величине, ни по направлению. Новый план сил для звена 2 можно не строить, так как при построении плана сил для группы 2-3 силы были сгруппированы по звеньям. Для определения реакции достаточно соединить конец вектора c началом вектора (построение показано штриховой линией).
.
Реакция на звено 3 со стороны звена 2 равна по величине реакции и противоположна ей по направлению.
Определив реакции во всех кинематических парах 2ПГ 1 вида, состоящей из звеньев 2 и 3, переходим к рассмотрению начального звена 1.
Рассматриваем начальное звено 1: на кривошип действует известная по величине и направлению реакция (по условию задачи массу звена 1 не учитываем). Определим реакцию cо стороны отброшенной стойки 0 и уравновешивающую силу . Величина уравновешивающей силы может быть определена при условии, что известны линия ее действия и точка приложения. При выполнении курсового проекта условно принимают, что линия действия уравновешивающей силы проходит через точку перпендикулярно .
Для упорядочения расчетов по определению реакций составляем таблицу с указанием очередности определения сил, а также уравнений, посредством которых они будут определяться.
Таблица
№ п/п |
Искомая величина |
Вид уравнения |
Звено, для которого составляется уравнение |
1 |
1 |
||
2 |
1 |
Запишем уравнения, указанные в таблице, в развернутом виде.
1. Для определения составляем уравнение моментов всех сил, действующих на кривошип, относительно точки :
, откуда
.
2. Для определения реакции со стороны отброшенной стойки составляем уравнение статического равновесия сил, действующих на звено 1:
Уравновешивающая сила и реакция известны по величине и направлению, а замыкающий вектор – искомая реакция .
Отрезки, изображающие известные силы на плане, определяем с учетом ранее принятого масштабного коэффициента
.
5. Определение уравновешивающей силы с помощью рычага Жуковского
В качестве проверки определим для рассматриваемого положения механизма уравновешивающую силу с помощью рычага Жуковского.
Решение задачи ведем в следующей последовательности.
План скоростей для рассматриваемого рабочего положения механизма поворачиваем на 900 в сторону, противоположную вращению кривошипа.
Все силы, действующие на звенья механизма, включая силы инерции и искомую уравновешивающую силу, переносим параллельно самим себе в одноименные точки повернутого плана. Если на звено действует момент сил, то этот момент следует предварительно представить на звене механизма как пару сил, вычислив их величины. Плечо пары выбирается на звене, к которому приложен момент, произвольно. В условиях данного курсового нужно перенести на рычаг Жуковского моменты сил инерции: , .
Представим момент на шатуне 2 в виде пары сил , приложенных в точках и перпендикулярно выбранному плечу так, чтобы направление действия момента на звено было сохранено. Тогда
.
Момент на звене 3 представим в виде пары сил , приложенных в точках и этого звена перпендикулярно звену :
.
Найденные силы пар переносим на рычаг Жуковского по общему правилу.
Составляем уравнение моментов всех сил относительно полюса повернутого плана скоростей:
откуда
Полученную с помощью рычага Жуковского уравновешивающую силу нужно сравнить с силой, полученной в результате кинетостатического расчета. При выполнении курсового проекта относительная разность не должна превышать 5%.
Выполним проверку:
. – верно.
Следовательно, расчет уравновешивающей нагрузки выполнен правильно.