Механика, молекулярная физика и термодинамика

          с1 и с2 – процентное содержание азота и гелия.

С другой стороны, масса каждого из газов:     

                                                    (2)

где    V – объем газа;

          m - молярная масса газа;

          mi/NА – масса молекулы.

Приравнивая правые части уравнений (1) и (2), получим:

c1M=;         c2M=;

откуда        n1/n2==1/3. Так как n1+n2=n,

то                     n1==0,8×1022 м-3,                 n2==2,4×1022 м-3.

Ответ: n1==0,8×1022 м-3,           n2==2,4×1022 м-3.



Задача 2 Найти среднюю квадратичную скорость, среднюю кинетическую энергию поступательного движения и среднюю полную кинетическую энергию молекул азота и гелия при температуре 27 0С. Определить полную энергию всех молекул 100 г каждого из газов.


T = 300 К

M1 = 0,1 кг

mНе = 4×10-3 кг/моль

mN2 = 28×10-3 кг/моль

Решение

Средняя кинетическая энергия поступательного движения одной молекулы идеального газа определяется как

<Е>=kT.

<E>=6,2×10-21 Дж, причем средние энергии поступательного движения одной молекулы азота и гелия одинаковы.

Средняя квадратичная скорость молекул газа зависит от массы его молекул:


<uкв> - ?

E - ?

W - ?


<uкв>=.                                                  (1)

Для расчета средней квадратичной скорости выражение (1) удобно преобразовать, умножив числитель и знаменатель на NA.

<uкв>=;

<uкв>=13,7×102 м/с – для гелия;

<uкв>=5,17×102 м/с – для азота.

Средняя полная энергия молекулы зависит от числа степеней свободы молекулы:

<E0>=.

Полная кинетическая энергия всех молекул, равная для идеального газа его внутренней энергии, может быть найдена как произведение Е0 на число всех молекул:

Е=U=Е0×N;            N=.

Гелий – одноатомный газ Þ i=3, тогда <E0>=6,2×10-21 Дж.

Азот – двухатомный газ Þ i=5, тогда <E0>=10,4×10-21 Дж.

Полная энергия всех молекул

Е=.

Для гелия W=93,5×103 Дж; для азота W=22,3×103 Дж.

Ответ: для гелия W=93,5×103 Дж; для азота W=22,3×103 Дж



Задача 3 Рассчитать среднюю длину свободного пробега молекул азота, коэф­фициент диффузии и вязкость при давлении р=105 Па и температуре 17 0С. Как изменятся найденные величины в результате двукратного увеличения объема газа: 1) при постоянном давлении; 2) при постоянной температуре? Эффективный диаметр молекул азота d=3,7×10-8см.

 

p = 105 Па

T = 300К

V2 = 2V1

1)                 p – const

2)                 T – const

d = 3,7×10-10 м

Решение

Средняя длина свободного пробега и коэффициенты переноса могут быть рассчитаны по следующим формулам:

                ;                                              (1)

             ;                                                      (2)

                 ,                                    (3)

где    n – концентрация молекул газа;

          <u> - средняя скорость молекулы;

           m0 – масса одной молекулы;

l - ?

D - ?

h - ?


Концентрацию молекул можно определить из уравнения    p=nkT:

n=p/kT   подставим в уравнение (1):

 6,5×10-8 м.

Средняя скорость <u>==470 м/с;

Тогда D=1×10-5 м2/с.

Для расчета h подставим (1) в (3):

1,2×10-5 .

Как видно из выражения (1), длина свободного пробега зависит только от концентрации молекул. При двукратном увеличении объема концентрация уменьшится вдвое. Следовательно, при любом процессе l2/l1=2.

В выражение для коэффициента диффузии входит не только длина свободного пробега, но и средняя скорость. Тогда:

При р=const объем прямо пропорционален температуре: Т2/Т1=V2/V1=2, тогда D2/D1=.

При Т=const  D2/D1=l2/l1=2.

Вязкость зависит от скорости молекул, следовательно, и от температуры, т.е.

,

при р=const ;

при Т=const .

Ответ:   l=6,5×10-8 м; D=1×10-5 м2/с; h=1,2×10-5 .


Задача 4 Пылинки массой 10-18 г. взвешены в воздухе. Определить толщину слоя воздуха, в пределах которого концентрация пылинок различается не более чем на 1%. Температура воздуха во всем объеме одинакова: Т=300 К.


m1 = 10-21 кг

T = 300 К

Решение

При равновесном распределении пылинок их концентрация зависит только от координаты z по оси, направленной вертикально. По распределению Больцмана:

                    n=n0×e-u/kT=n0×e-mgz/kT.                                       (1)

DZ - ?

                            

Дифференцируя выражение (1) по z, получим

dn=-n0××e-mgz/kT×dz.

Так как n0×e-mgz/kT=n, то dn=-×n×dz. Отсюда dz=.

Знак «-» показывает, что положительным изменениям координаты (dz>0) соответствует уменьшение относительной концентрации (dn<0). Знак «-» опускаем и заменяем dz и dn конечными приращениями Dz и Dn:

.

Dn/n=0,01 по условию задачи. Подставляя значения, получим Dz=4,23 мм.

Ответ: Dz=4,23 мм


Задача 5 Вычислить удельные теплоемкости сv и сp смеси неона и водорода. Массовые доли газов w1=0,8 и w2=0,2. Значения удельных теплоемкостей газов – неон: сv=6,24 ; cp=1,04; водород: сv=10,4; сp=14,6.

w1 =  0,8

w2 =  0,2

cV1 = 6,24 кДж/кг × К

cp1  = 1,04 кДж/кг × К

cV2 = 10,4 кДж/кг × К

cp2 = 14,6 кДж/кг × К

                                           Решение

Теплоту, необходимую для нагревания смеси на DТ, выразим двумя соотношениями:

       ,                                              (1)

где    сv – удельная теплоемкость смеси,

          M1 – масса неона,

M2 – масса водорода,

 и   ,                                             (2)

где    cv1 и сv2 – удельные теплоемкости неона и водорода соответственно.

cp - ?

cv - ?

Приравняв правые части выражений (1) и (2) и разделив обе части полученного равенства на DТ, найдем:


,

откуда        .

Отношения  и  выражают массовые доли неона и водорода соответственно. С учетом этих обозначений  последняя формула примет вид:

,

 Подставляя значения, получим   сv=2,58×103 .

Таким же образом получим формулу для вычисления удельной теплоемкости смеси при постоянном давлении:

                                                         

 Подставляя значения, получим       ср=3,73103.

Ответ: сv=2,58×103 ; ср=3,73103.


Задача 6 Кислород массой M=2 кг занимает объем v1=1 м3 и находится под давлением p1=2атм= 2,02×105 Па. Газ был нагрет сначала при постоянном давлении до объема V2=3 м3, а затем при постоянном объеме до давления

p2=5атм=5,05×105 Па. Найти изменение внутренней энергии газа DU, совершенную им работу А и теплоту, переданную газу. Построить график процесса.

M = 2 кг

V1 = 1 м3

p1  = 2,02× 105 Па

p – const

V2 = 3 м3

V – const

p2  = 5,05 × 105 Па

                              Решение

Изменение внутренней энергии газа определяется по формуле

      .                                                    (1)

Из уравнения Менделеева - Клапейрона  , выразим температуру:

        .                                                                 (2)

Подставляя в формулу (2) значения давления и объема, получим значения температуры: Т1=389 К, Т2=1167 К. Из уравнения (1)   DU=3,28×106 Дж.

Работа рассчитывается по формуле                      

при    p=const       А1=0,404×106 Дж;

DU - ?

A - ?

Q - ?

                                                                        V=const  А2=0.

Полная работа, совершенная газом:  А=А1+А2=0,404×106 Дж.

На основании первого начала термодинамики

получаем теплоту, переданную газу: Q=3,68×106 Дж.


График процесса изображен на рисунке:    p

                                                                   p2                            3

                                                                  

                                                                   p1        1                  2

                                                                                                          v

                                                                             v1                v2

Ответ: DU=3,28×106 Дж; А=0,404×106 Дж; Q=3,68×106 Дж.


Задача 7  Идеальная тепловая машина работает по циклу Карно нагретым воздухом, взятом при начальном давлении 7×105 Па и температуре 127 0С. Начальный объем воз­духа 2×10-3 м3. После первого изотермического расширения воздух занял объем    5 л, после адиабатического расширения объем стал равен 8 л. Найти координаты пересечения изотерм и адиабат.


p1  = 7× 105 Па

T1 = 400К

V1 = 2 × 10-3 м3

T – const

V2 = 5 × 10-3 м3

Q – const

V3 = 8 × 10-3 м3

 Решение


 Уравнение изотермы АВ имеет ви                               .                                                     (1)

V1-?, р1-?,

V2-?, р2-?,

V3-?, р3-?,

V4-?, р4-?.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать