с1 и с2 – процентное содержание азота и гелия.
С другой стороны, масса каждого из газов:
(2)
где V – объем газа;
m - молярная масса газа;
mi/NА – масса молекулы.
Приравнивая правые части уравнений (1) и (2), получим:
c1M=; c2M=;
откуда n1/n2==1/3. Так как n1+n2=n,
то n1==0,8×1022 м-3, n2==2,4×1022 м-3.
Ответ: n1==0,8×1022 м-3, n2==2,4×1022 м-3.
Задача 2 Найти среднюю квадратичную скорость, среднюю кинетическую энергию поступательного движения и среднюю полную кинетическую энергию молекул азота и гелия при температуре 27 0С. Определить полную энергию всех молекул 100 г каждого из газов.
T = 300 К M1 = 0,1 кг mНе = 4×10-3 кг/моль mN2 = 28×10-3 кг/моль |
Решение Средняя кинетическая энергия поступательного движения одной молекулы идеального газа определяется как <Е>=kT. <E>=6,2×10-21 Дж, причем средние энергии поступательного движения одной молекулы азота и гелия одинаковы. Средняя квадратичная скорость молекул газа зависит от массы его молекул: |
<uкв> - ? E - ? W - ? |
<uкв>=. (1)
Для расчета средней квадратичной скорости выражение (1) удобно преобразовать, умножив числитель и знаменатель на NA.
<uкв>=;
<uкв>=13,7×102 м/с – для гелия;
<uкв>=5,17×102 м/с – для азота.
Средняя полная энергия молекулы зависит от числа степеней свободы молекулы:
<E0>=.
Полная кинетическая энергия всех молекул, равная для идеального газа его внутренней энергии, может быть найдена как произведение Е0 на число всех молекул:
Е=U=Е0×N; N=.
Гелий – одноатомный газ Þ i=3, тогда <E0>=6,2×10-21 Дж.
Азот – двухатомный газ Þ i=5, тогда <E0>=10,4×10-21 Дж.
Полная энергия всех молекул
Е=.
Для гелия W=93,5×103 Дж; для азота W=22,3×103 Дж.
Ответ: для гелия W=93,5×103 Дж; для азота W=22,3×103 Дж
Задача 3 Рассчитать среднюю длину свободного пробега молекул азота, коэффициент диффузии и вязкость при давлении р=105 Па и температуре 17 0С. Как изменятся найденные величины в результате двукратного увеличения объема газа: 1) при постоянном давлении; 2) при постоянной температуре? Эффективный диаметр молекул азота d=3,7×10-8см.
p = 105 Па T = 300К V2 = 2V1 1) p – const 2) T – const d = 3,7×10-10 м |
Решение Средняя длина свободного пробега и коэффициенты переноса могут быть рассчитаны по следующим формулам: ; (1) ; (2) , (3) где n – концентрация молекул газа; <u> - средняя скорость молекулы; m0 – масса одной молекулы; |
l - ? D - ? h - ? |
Концентрацию молекул можно определить из уравнения p=nkT:
n=p/kT подставим в уравнение (1):
6,5×10-8 м.
Средняя скорость <u>==470 м/с;
Тогда D=1×10-5 м2/с.
Для расчета h подставим (1) в (3):
1,2×10-5 .
Как видно из выражения (1), длина свободного пробега зависит только от концентрации молекул. При двукратном увеличении объема концентрация уменьшится вдвое. Следовательно, при любом процессе l2/l1=2.
В выражение для коэффициента диффузии входит не только длина свободного пробега, но и средняя скорость. Тогда:
При р=const объем прямо пропорционален температуре: Т2/Т1=V2/V1=2, тогда D2/D1=.
При Т=const D2/D1=l2/l1=2.
Вязкость зависит от скорости молекул, следовательно, и от температуры, т.е.
,
при р=const ;
при Т=const .
Ответ: l=6,5×10-8 м; D=1×10-5 м2/с; h=1,2×10-5 .
Задача 4 Пылинки массой 10-18 г. взвешены в воздухе. Определить толщину слоя воздуха, в пределах которого концентрация пылинок различается не более чем на 1%. Температура воздуха во всем объеме одинакова: Т=300 К.
m1 = 10-21 кг T = 300 К |
РешениеПри равновесном распределении пылинок их концентрация зависит только от координаты z по оси, направленной вертикально. По распределению Больцмана:n=n0×e-u/kT=n0×e-mgz/kT. (1) |
DZ - ? |
Дифференцируя выражение (1) по z, получим
dn=-n0××e-mgz/kT×dz.
Так как n0×e-mgz/kT=n, то dn=-×n×dz. Отсюда dz=.
Знак «-» показывает, что положительным изменениям координаты (dz>0) соответствует уменьшение относительной концентрации (dn<0). Знак «-» опускаем и заменяем dz и dn конечными приращениями Dz и Dn:
.
Dn/n=0,01 по условию задачи. Подставляя значения, получим Dz=4,23 мм.
Ответ: Dz=4,23 мм
Задача 5 Вычислить удельные теплоемкости сv и сp смеси неона и водорода. Массовые доли газов w1=0,8 и w2=0,2. Значения удельных теплоемкостей газов – неон: сv=6,24 ; cp=1,04; водород: сv=10,4; сp=14,6.
w1 = 0,8 w2 = 0,2 cV1 = 6,24 кДж/кг × К cp1 = 1,04 кДж/кг × К cV2 = 10,4 кДж/кг × К cp2 = 14,6 кДж/кг × К |
Решение Теплоту, необходимую для нагревания смеси на DТ, выразим двумя соотношениями: , (1) где сv – удельная теплоемкость смеси, M1 – масса неона, M2 – масса водорода, и , (2) где cv1 и сv2 – удельные теплоемкости неона и водорода соответственно. |
cp - ? cv - ? |
Приравняв правые части выражений (1) и (2) и разделив обе части полученного равенства на DТ, найдем: |
,
откуда .
Отношения и выражают массовые доли неона и водорода соответственно. С учетом этих обозначений последняя формула примет вид:
,
Подставляя значения, получим сv=2,58×103 .
Таким же образом получим формулу для вычисления удельной теплоемкости смеси при постоянном давлении:
Подставляя значения, получим ср=3,73103.
Ответ: сv=2,58×103 ; ср=3,73103.
Задача 6 Кислород массой M=2 кг занимает объем v1=1 м3 и находится под давлением p1=2атм= 2,02×105 Па. Газ был нагрет сначала при постоянном давлении до объема V2=3 м3, а затем при постоянном объеме до давления
p2=5атм=5,05×105 Па. Найти изменение внутренней энергии газа DU, совершенную им работу А и теплоту, переданную газу. Построить график процесса.
M = 2 кг V1 = 1 м3 p1 = 2,02× 105 Па p – const V2 = 3 м3 V – const p2 = 5,05 × 105 Па |
РешениеИзменение внутренней энергии газа определяется по формуле . (1) Из уравнения Менделеева - Клапейрона , выразим температуру: . (2) Подставляя в формулу (2) значения давления и объема, получим значения температуры: Т1=389 К, Т2=1167 К. Из уравнения (1) DU=3,28×106 Дж. Работа рассчитывается по формуле при p=const А1=0,404×106 Дж; |
DU - ? A - ? Q - ? |
V=const А2=0.
Полная работа, совершенная газом: А=А1+А2=0,404×106 Дж.
На основании первого начала термодинамики
получаем теплоту, переданную газу: Q=3,68×106 Дж.
График процесса изображен на рисунке: p
p2 3
p1 1 2
v
v1 v2
Ответ: DU=3,28×106 Дж; А=0,404×106 Дж; Q=3,68×106 Дж.
Задача 7 Идеальная тепловая машина работает по циклу Карно нагретым воздухом, взятом при начальном давлении 7×105 Па и температуре 127 0С. Начальный объем воздуха 2×10-3 м3. После первого изотермического расширения воздух занял объем 5 л, после адиабатического расширения объем стал равен 8 л. Найти координаты пересечения изотерм и адиабат.
p1 = 7× 105 Па T1 = 400К V1 = 2 × 10-3 м3 T – const V2 = 5 × 10-3 м3 Q – const V3 = 8 × 10-3 м3 |
Решение Уравнение изотермы АВ имеет ви . (1) |
V1-?, р1-?, V2-?, р2-?, V3-?, р3-?, V4-?, р4-?. |
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14