К основным понятиям, используемым в динамике поступательного движения, относятся сила, масса тела, импульс тела (системы тел).
Силой называется векторная физическая величина, являющаяся мерой механического действия одного тела на другое. Механическое действие возникает как при непосредственном контакте взаимодействующих тел (трение, реакция опоры, вес и т.д.), так и посредством силового поля, существующего в пространстве (сила тяжести, кулоновские силы и т.д.). Сила характеризуется модулем, направлением и точкой приложения.
Одновременное действие на тело нескольких сил ,,..., может быть заменено действием результирующей (равнодействующей) силы :
=++...+=.
Массой тела называется скалярная величина, являющаяся мерой инертности тела. Под инертностью понимается свойство материальных тел сохранять свою скорость неизменной в отсутствии внешних воздействий и изменять её постепенно (т.е. с конечным ускорением) под действием силы. Массы всех тел определяются по отношению к массе тела, принятого за эталон.
Импульсом тела (материальной точки) называется векторная физическая величина, равная произведению массы тела на его скорость: .
Импульс системы материальных точек равен векторной сумме импульсов точек, составляющих систему: .
Второй закон Ньютона: скорость изменения импульса тела равна действующей на него силе:
.
В частном случае (при постоянной массе): ускорение, приобретаемое телом относительно инерциальной системы отсчета, прямо пропорционально действующей на него силе и обратно пропорционально массе тела:
.
Третий закон Ньютона: Силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению.
,
где - сила, действующая на 1-ую точку со стороны 2-ой,
- сила, действующая на 2-ую точку со стороны 1-ой.
Из третьего закона следует, что в любой механической системе материальных точек геометрическая сумма всех внутренних сил (т.е. сил, с которыми взаимодействуют между собой материальные точки системы) равна нулю.
2.2. Динамика вращательного движения твердого тела.
Вращательное действие силы характеризуется такой величиной, как момент силы относительно оси вращения (рис. 5).
Пусть М - точка приложения силы , - радиус-вектор точки М, проведённый перпендикулярно оси вращения O'O. Разложим на три составляющие:
- осевая, параллельная оси вращения,
- радиальная, направленная вдоль вектора ,
- касательная, перпендикулярная и оси вращения.
Составляющие и - вращения тела вокруг оси O'O не создают. Вращающее действие силы создаётся составляющей . Моментом силы относительно оси вращения O'O называется векторное произведение радиуса-вектора точки приложения силы, проведённого перпендикулярно оси вращения, на составляющую силы , перпендикулярную оси вращения и радиусу вектору :
.
Вектор момента силы направлен вдоль оси вращения и связан с направлением силы правилом правого винта.
Если на тело действует несколько сил, то результирующий момент сил равен векторной сумме моментов всех сил, действующих на тело.
Момент инерции тела характеризует инертные свойства тела при вращательном движении и зависит от распределения массы тела относительно оси вращения.
|
- момент инерции материальной точки массой m, находящейся на расстоянии r от оси.
- момент инерции системы материальных точек.
- момент инерции тела, где - плотность тела.
Момент инерции тела относительно произвольной оси может быть рассчитан по
теореме Штейнера: момент инерции тела
относительно оси O'O равен сумме момента инерции тела относительно оси, проходящей через центр масс и параллельной O'O, и произведения массы тела на квадрат расстояния между осями (рис. 6):
.
Моментом импульса материальной точки называется векторная величина, равная векторному произведению радиуса вектора на импульс точки (рис. 7):
.
Моментом импульса системы материальных точек называется геометрическая сумма моментов импульсов точек, составляющих систему:
Рис. 6
Моментом импульса тела относительно оси вращения называется величина
,
где - момент инерции тела относительно данной оси.
Рис. 7
Основной закон динамики вращательного движения:
Скорость изменения момента импульса тела относительно оси равна результирующему моменту внешних сил относительно той же оси. При постоянном моменте инерции угловое ускорение, приобретаемое телом, пропорционально моменту сил, приложенных к телу, и обратно пропорционально моменту инерции тела:
.
Из законов динамики поступательного и вращательного движений следует условие равновесия тел:
2.3. Некоторые силы в механике.
- сила тяжести, - ускорение свободного падения. |
|
N |
- реакция опоры, |
Fтр = kN |
- сила трения, k - коэффициент трения. |
Fх = - kx |
- сила упругости, k - коэффициент жесткости, х – деформация. |
Fн |
- сила натяжения нити или подвеса, численно равная весу тела. |
PP = mgP =m(g+а) P = m(g-а) |
- вес тела, сила с которой тело действует на опору или подвес. - опора покоится. - опора движется с ускорением а, направленным вверх. - опора движется с ускорением а, направленным вниз. |
3. Работа и механическая энергия.
3.1. Работа и мощность при поступательном и вращательном движениях.
У материальной точки (тела) в процессе силового взаимодействия с другими телами может изменяться состояние движения (координаты и скорость). В этом случае говорят, что над телом совершается работа. В механике принято говорить, что работа совершается силой. Работа – это физическая величина, характеризующая процесс превращения одной формы движения в другую.
Элементарной работой силы на малом перемещении называется величина, равная скалярному произведению силы на перемещение:
,
где - элементарный путь точки приложения силы за время dt, a- угол между векторами и .
Если на систему действуют несколько сил, то результирующая работа равна алгебраической сумме работ, совершаемых каждой силой в отдельности.
Работа силы на конечном участке траектории или за конечный промежуток времени может быть вычислена следующим образом:
.
Если = const, то А=.
При вращательном движении работа определяется моментом сил:
,
если М = const, то А=Мjj.
Быстроту совершения работы характеризует мощность.
Мощностью называется скалярная величина, равная работе, совершаемой в единицу времени:
.
При вращательном движении мощность определяется следующим образом:
.
3.2. Консервативные и неконсервативные силы.
Консервативными силами называются силы, работа которых не зависит от пути перехода тела или системы из начального положения в конечное. Характерное свойство таких сил - работа на замкнутой траектории равна нулю:
К консервативным силам относятся: сила тяжести и сила упругости.
Неконсервативными силами называются силы, работа которых зависит от пути перехода тела или системы из начального положения в конечное. Работа этих сил на замкнутой траектории отлична от нуля. К неконсервативным силам относятся: сила трения, сила сопротивления и т.д.
3.3. Кинетическая энергия при поступательном и вращательном движениях.
Кинетической энергией тела называется функция механического состояния, зависящая от массы тела и скорости его движения (энергия механического движения).
Кинетическая энергия поступательного движения: . Кинетическая энергия вращательного движения: .
При сложном движении твёрдого тела его кинетическая энергия может быть представлена через энергию поступательного и вращательного движения:
.
Свойства кинетической энергии:
1. Кинетическая энергия является конечной, однозначной, непрерывной функцией механического состояния системы.
2. Кинетическая энергия не отрицательна: ЕК³ 0.
3. Кинетическая энергия системы тел равна сумме кинетических энергий тел, составляющих систему.
4. Приращение кинетической энергии тела или системы равно работе всех сил, действующих на систему или на тело: .
3.4. Потенциальная энергия.
Потенциальная энергия системы - это функция механического состояния системы, зависящая от взаимного расположения всех тел системы и от их положения во внешнем потенциальном поле сил. Убыль потенциальной энергии равна работе, которую совершают все консервативные силы (внутренние и внешние) при переходе системы из начального положения в конечное.
ЕП1 - ЕП2 = -DЕП = А12конс, .
Из определения потенциальной энергии следует, что она может быть определена по консервативной силе, причём с точностью до произвольной постоянной, значение которой определяется выбором нулевого уровня потенциальной энергии.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14