Полимерные электреты


Рис 22 Кривые изотермической релаксации поверхностного потенциала при разных температурах (Т1< Т2)

В зависимости от регистрируемой на опыте физической величины изотермическая и термостимулированная релаксации могут иметь разные названия и аппаратную реализацию. В изотермических методах регистрируют зависимость от времени при постоянной температуре поверхностного потенциала (ИТРП), эффективной поверхностной плотности заряда (ИТРЗ). На рис. 22 показаны типичные кривые ИТРП.

В термостимулированных методах регистрируется зависимость от температуры поверхностного потенциала (ТСРП), тока разрядки (ТСД или ТСР). При этом температура обычно повышается по линейному закону:

Т=Т0+βt  (48)

Типичные кривые ТСРП показаны на рис. 23, а ТСД - на рис. 24. На кривых ТСД обнаруживаются один или несколько максимумов, связанных с несколькими сортами ловушек и механизмами разрядки.

Рис. 24

 

Для каждого кристаллического или полимерного диэлектрика вид кривых ТСРП или ТСД индивидуален. Кривые отличаются по области начала релаксации заряда или поляризации, скорости спада поверхностного потенциала V, форме и высоте пиков. Анализ кривых позволяет определить параметры диполей или ловушек - энергию активации, частотный фактор и др. Подробнее этот вопрос будет рассмотрен ниже.

Схема установки для регистрации кривых ТСРП показана на рис. 25. Она практически не отличается от установки для измерения поверхностного потенциала с вибрирующим зондом, но в качестве регистрирующего прибора используется двухкоординатный самопишущий потенциометр или графопостроитель. Установка снабжена нагревателем, температура которого повышается по линейному закону с заданной скоростью с помощью специального блока регулировки. Термопара позволяет измерять температуру и используется в цепи обратной связи регулятора температуры. Графопостроитель вычерчивает кривую ТСРП - график V(Т).

Рис. 25. Схема регистрации ТСРП:-1 - электрет; 2 - вибрирующий электрод; 3 - нагреватель нижнего электрода: 4 -термопара; 5 - регулятор температуры; 6 - компенсационный измеритель поверхностного потенциала; 7 - двухкоординатный потенциометр

На рис. 26 и 27 показаны схемы установок для регистрации токов термостимулированной релаксации в условиях «короткозамкнутой» цепи (оба электрода касаются поверхности диэлектрика или напылены на него) и «разомкнутой» цепи (с воздушным зазором между электретом и измерительным электродом).

Второй способ более информативен, так как предотвращается касание электродом заряженной поверхности, в результате которого может произойти разрядка, осаждение заряда противоположного знака за счет электрических разрядов и т.п. явления. Кроме того, метод короткозамкнутой цепи «не замечает» некоторые релаксационные процессы, например, релаксацию заряда или поляризации электрета за счет собственной проводимости. Но данный способ технически более сложен, так как возникает проблема поддержания величины воздушного зазора в процессе нагревания. Особенностью обеих установок является наличие прибора для измерения крайне слабых токов (до А) - электрометра. Сигналы от термопары и электрометра подаются на вход двухкоординатного самописца или графопостроителя для вычерчивания кривых ТСР.

Рис. 26. Регистрация тока термостимулированной разрядки в условиях «короткозамкнутой» - цепи: 1 - электрет; 2 -электроды; 3 - измерительная камера; 4 - спираль нагревателя; 5 - термопара; 6 - регулятор температуры; 7 - электрометр; 8 - двухкоординатный потенциометр

В ряде случаев измерение токов ТСД (ТСР) проводят при низких, «азотных» температурах. Тогда установка снабжается криостатом, в который помещается образец и измерительная ячейка вместе с нагревательным элементом. Низкие температуры обеспечиваются

заливкой в прибор жидкого азота.

Техника термодеполяризационного анализа получила значительное развитие и широко применяется в практике лабораторных исследований не только электретного эффекта, но и в физике полупроводников и диэлектриков, физике полимеров, давая важные сведения по структуре и характеру теплового движения кинетических единиц в полимерах. Построены установки для фракционной деполяризации (5; 6), позволяющие исследовать образцы с квазинепрерывным распределением ловушек по энергиям активации и частотному фактору, установки, оснащенные компьютерами и т.д. Развивается теория термоактивационного анализа (6, 11), методики численного моделирования, дающие возможность восстановить по кривым термодеполяризации форму энергетического распределения ловушек в материале.

Рис. 27. Регистрация тока термостимулированной разрядки в условиях «разомкнутой» цепи- 1 - электрет; 2 - электроды; 3 - измерительная камера; 4 - спираль нагревателя; 5 - термопара, 6 - регулятор температуры; 7 - электрометр; 8 - двухкоординатный потенциометр.


Элементарная теория изотермической и термостимулированной релаксации

Релаксация в электретах с ориентационной поляризацией

 

Изотермическая релаксация

 

«Замороженная» в образце поляризация неравновесна, поскольку ее собственное электрическое поле стремится разориентировать диполи, дипольные моменты которых направлены против поля. При благоприятных условиях, когда дипольная группа может совершить поворот (возникает полость, возрастает кинетическая энергия за счет термофлуктуации и т.п.), ди­поль разворачивается. Эти акты постепенно приводят к уменьшению поляризации и электрического поля в электрете. Время релаксации

     (49)

зависит от температуры - при более высоких Т релаксация происходит быстрее. Еa - энергия активации - высота потенциального барьера, который должна преодолеть дипольная группа для перехода из одного положения равновесия в другое; k - постоянная Больцмана. Величина

     (50)

называется частотным фактором. Его значение обычно близко к частоте тепловых колебаний соответствующей кинетической единицы.

Уменьшение поляризации со временем в электретах с одним сортом постоянных диполей (одним временем релаксации) при постоянной температуре происходит по закону, близкому к экспоненциальному:

    (51)

Формула (49) часто называется законом Аррениуса. В полимерных полярных диэлектриках этот закон не редко не выполняется, т.к. поворот кинетической единицы с дипольным моментом (звена, группы, сегмента и т.п.) определяется не фиксированной величиной потенциального барьера, а кооперативным характером теплового движения кинетических единиц. Смысл данного выражения в том, что поворот данной группы в значительной мере обусловлен тепловым движением соседних с ней кинетических единиц. Ведь для поворота группы необходим достаточный свободный объем, который появляется при «удачном» мгновенном расположении «соседей». При температурах выше температуры стеклования зависимость времени релаксации от Т опи­сывается т.н. уравнением ВЛФ - Вильямса-Ландела-Ферри:

    (52)

Убедиться в выполнении закона изотермической релаксации (51) можно, если построить график зависимости 1п Р от t. Должна получиться прямая. В противном случае в образце имеется несколько сортов диполей -группы с разными дипольными моментами, либо расположенные в структурно отличающихся областях полимера (в аморфной фазе, кристаллической фазе, на фазовых границах).



Рис. 28. График изотермической релаксации в координатах 1пР-t

По наклону прямой можно определить время релаксации. Однако основные характеристики диполей -энергия активация и частотный фактор не определяются.

Повысить информативность эксперимента можно, прибегнув к термостимулированной деполяризации.


 Термостимулированная релаксация поляризации

 

Измерение тока ТСД осуществляется по схеме, показанной на рис. 26. Отличие состоит только в том, что вместо избыточного заряда на ловушках электрет имеет истинную дипольную поляризацию. При нагревании электрета между электродами по линейному закону Т=Т0t электрометр будет измерять ток разрядки, протекающий во внешней цепи.

По Дебаю,~-P, откуда получаем дифференциальное уравнение релаксации:

  (53)

Введем частоту релаксации ω= 1/t. С учетом выражения для t получаем:

    (54)

Эта величина зависит от времени, т.к. со временем повышается температура Т. Подставляя (54) в (53), получим:

Заменяя переменные с использованием закона роста температуры, получаем дифференциальное уравнение релаксации, переменными которого являются Р и Т:

   .(55)

Интегрируя по температуре от начального значения Т0 до данного текущего значения T, получаем:

   (56)

Ток во внешней цепи можно найти на основании выражений: . Производную  находим, продифференцировав решение (56) по температуре:

    (57)

Окончательное выражение для тока ТСД принимает вид:

   (58)

Эта зависимость имеет вид несимметричной «колоколообразной» кривой с максимумом (рис. 29).    I(T)

                              

Рис. 29. Кривая ТСД

Максимум кривой легко найти, вычислив производную  приравняв ее нулю. Тогда температура Tm может быть найдена из уравнения:

   (59)

Уравнение (59) содержит два искомых параметра – Ea  и ω0. Их можно найти, если независимо определить один из них. Обычно находят энергию активации по методу Гарлика-Гибсона, известному также под названием «метода начального подъема» тока. Суть его в том, что на начальном участке нагревания образца, когда температуры T и Т0 не слишком отличаются, интеграл в (58) стремится к нулю, и выражение для тока ТСД принимает вид:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать