Проектирование тепловой электрической станции для обеспечения города с населением 190 тысяч жителей

Предусматривается возможность дальнейшего расширения ВПУ. Вне здания устанавливаются осветлители, промежуточные баки, декарбонизаторы. Эти установки имеют тепловую изоляцию, баки имеют дополнительный подогрев обратной водой тепловой сети. Вся запорная и регулирующая арматура этих установок размещается внутри здания.

В помещении ВПУ предусмотрена комната площадью 63 м3 для ремонтных работ и восстановления химических покрытий.

Для хранения химреагентов и материалов на ТЭЦ имеется склад, оборудованный устройствами для механизированной выгрузки, транспортировки и приготовления реагентов и их растворов. Предусматриваются специальные помещения и ёмкости для хранения реагентов. Для хранения кислот и щелочей установлено по два бака для каждого реагента, для остальных - по одному. Склад обеспечивает запас химреагентов на 15 суток.


7.6 Описание очистки конденсатов

 

7.6.1 Замазученный конденсат, конденсат паровых турбин

Замазученный конденсат очищается на станции по схеме с нефтеловушкой и фильтрами. Исходная вода поступает в баки-приёмники, где происходит частичное отстаивание воды. Далее вода поступает в нефтеловушку, которая обеспечивает 40%-ое удаление нефтепродуктов за счет скребкового механизма, сборных труб и эжектора для удаления осадка. Далее вода поступает на флотационную установку. Предварительно в воду добавляется коагулянт. Флотационная установка обеспечивает 30%-ое удаление нефтепродуктов. После промежуточного бака и насосов вода фильтруется на механических фильтрах с засыпкой антрацита и активированного угля.

Для обессоливания турбинного конденсата блока Т-250-240 применяется блочная обессоливающая установка, состоящая из трех сульфоугольных механических фильтров и трех фильтров смешанного действия (ФСД). За ФСД установлена ловушка для улавливания выноса ионитов из-за возможного дефекта дренажных устройств. БОУ размещена в машинном зале на нулевой отметке с компоновкой фильтров в два яруса /7/.


7.6.2 Сточные воды ТЭЦ, методы их очистки и уменьшения

Сточные воды проектируемой ТЭЦ включают: охлаждающую воду конденсаторов паровых турбин, обмывочные воды конвективных поверхностей нагрева паровых и водогрейных котлов, воды загрязненные нефтепродуктами и маслами, воды зашламленные от периодических продувок, отходы регенерационных отмывок фильтров ВПУ, растворы консервантов и кислотных промывок.

Сбросные воды ВПУ и БОУ очищаются по схеме нейтрализации Ca(OH)2 с применением двух баков-нейтрализаторов. Внутренняя поверхность баков покрыта антикоррозионным материалом. Каждый бак рассчитан на приём не менее суточного количества регенерационных вод.

 Количество сточных вод на ТЭЦ уменьшается в результате применения на ВПУ оборудования противоточной фильтрации. Это позволяет уменьшить расход химреагентов на регенерацию на 30-40%. А также применяется парная регенерация фильтров 1 и 2 ступеней. Промывочные сбросные воды ТЭЦ обезвреживаются по схеме нейтрализации в баках-нейтрализаторах /8/.


7.7 Водно-химический режим на ТЭЦ


Водно-химический режим тепловых электрических станций должен обеспечивать работу теплосилового оборудования без повреждений и снижения экономичности, вызванных образованием: накипи, отложений на поверхностях нагрева; шлама в котлах, тракте питательной воды и в тепловых сетях; коррозии внутренних поверхностей теплоэнергетического оборудования и тепловых сетей; отложений в проточной части паровых турбин; отложений на поверхностях трубок конденсаторов турбин.

С целью обеспечения рационального водно-химического режима на тепловых электростанциях осуществляется нормирование качества пара и воды.

К основным мероприятиям по поддержанию нормируемых показателей водно-химического режима энергоблоков ТЭС относятся: предпусковые промывки оборудования; фосфатирование котловой воды; проведение эксплуатационных промывок оборудования; консервация оборудования во время простев; герметизация баков питательной воды и её составляющих с целью предотвращения попадания кислорода в пароводяной цикл; обессоливание и обескремнивание добавочной воды; удаление свободной угольной кислоты из добавочной химически обработанной воды; обезжелезивание и обессоливание различных конденсатов; деаэрация турбинного конденсата и питательной воды; оснащение конденсаторов специальными дегазирующими устройствами с целью удаления кислорода из конденсата, обеспечение достаточной герметичности конденсаторов турбин со стороны охлаждающей воды и воздуха; постоянный вывод неконденсирующихся газов из паровых камер теплообменников; тщательное уплотнение конденсационных насосов, арматуры и фланцевых соединений трубопроводов, находящихся под разряжением; антикоррозийное покрытие оборудования и применение коррозионно-стойких материалов; введение в паровой цикл корректирующих химических реагентов, соответствующих данному водно-химическому режиму; автоматическая дозировка добавок, корректирующих водный режим.

Для прямоточного котла ТГМП-314А выбираем нейтрально-окислительный режим, основанный на существенном повышении окислительного потенциала среды дозированием в питательную воду кислорода или перекиси водорода и поддержанием рН в пределах 7,0±0,5.

Нормы качества пара прямоточных котлов /8/ установленных на ТЭЦ приведены в таблице 9.


Таблица 9. Нормы качества пара прямоточных котлов

Нормируемый показатель

Численное значение

Содержание натрия (в пересчёте на Na), мкг/кг, не более

5

Кремниевая кислота (в пересчёте на SiO2), мкг/кг

15

Удельная электрическая проводимость Н-катионированной пробы, мк См/см, не более

0,3

Значение pH, не менее

7,5


Таблица 10. Нормы качества питательной воды прямоточных котлов

Нормируемый показатель

Численное значение

Содержание натрия (в пересчёте на Na), мкг/кг, не более

5

Кремниевая кислота (в пересчёте на SiO2), мкг/кг

15

Удельная электрическая проводимость Н-катионированной пробы, мк См/см, не более

0,3

Значение pH, не менее

7,0

Общая жесткость мг-экв/кг, не более

0,2

Содержание железа в пересчете на Fe мкг/кг, не более

10

Содержание меди перед Д мкг/кг, не более

5

Вещества, экстрагируемые эфиром, мкг/кг, не более

0,1


Качество воды для подпитки тепловых сетей и сетевой воды нормируется по следующим показателям: растворенный кислород допустим в колличестве не более 20 мкг/кг для сетевой воды и не более 50 мкг/кг для подпиточной воды; содержания веществ, экстрагируемых эфиром не более 1 мг/кг, взвешанных веществ не более 5 мг/кг, соединения железа-0,5 мг/кг.

По ПТЭ для пусковых режимов блоков СКП разрешается некоторое ухудшение качества пара. Неизбежность ухудшения качества пара в пусковых режимах связана со стояночным режимом, предшествующим пуску блока.


8. Электрическая часть


8.1 Выбор основного электрооборудования


К основному электрическому оборудованию электростанций относятся генераторы и трансформаторы. Количество агрегатов и их параметры выбираются в зависимости от типа, мощности и схемы станции, мощности энергосистемы и других условий.

Схемы выдачи электроэнергии зависят от типа и мощности станции, состава оборудования и распределения нагрузки между распредустройствами разного напряжения. В исходном задании связь с энергосистемой осуществляется по линиям высокого напряжения 330 кВ и 110 кВ.

Так как при установке мощных генераторов возрастает значение токов короткого замыкания, то целесообразно присоединение генераторов непосредственно к РУ ВН в виде блоков генератор-трансформатор.

При выборе генераторов руководствуемся следующими соображениями:

все генераторы принимаются одинаковой мощности;

число генераторов должно быть не менее 2 и не более 8;

единичная мощность генератора не должна превышать 10% установленной мощности системы, включая проектируемую ТЭЦ.

Исходя из этого, выбираем на ТЭЦ три одинаковых генератора типа:

ТВВ-320-2ЕУЗ с параметрами – Sном = 385 МВА; cos jн=0,85; .Число и мощность трансформаторов на электростанции зависит от их назначения, схемы включения генераторов, количества РУ и режимов энергопотребления на каждом из напряжений. Все трансформаторы выбираются трёхфазными.

Мощность двухобмоточного трансформатора, работающего в блоке с генератором, принимается равной или большей мощности генератора в МВА.

Таким образом, для каждого генератора, работающего в блоке с трансформатором, выбираем трансформатор типа:

ТДЦ – 400000 / 330 с параметрами: Sном=400 МВА, Uвн=347 кВ, Uнн=20 кВ, Рх=300 кВт, Ркз=790 кВт, Uк=11.5 %.

Мощность рабочих трансформаторов собственных нужд выбирается исходя из условия 7% потребления от мощности генератора. Рабочие трансформаторы собственных нужд блоков присоединяются к отпайкам от токопроводов генераторного напряжения. На блочной станции с тремя блоками устанавливается два пуско-резервных трансформатора собственных нужд. Мощность пуско-резервного трансформатора собственных нужд определяется исходя из условия замены одного из наибольших рабочих трансформаторов собственных нужд и одновременного обеспечения запуска блока. В общем случае мощность пуско-резервных трансформаторов собственных нужд в 1.5 раза больше мощности наибольшего рабочего трансформатора собственных нужд.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать