Средства учета количества электричества и электрической энергии

Устройства дозирования могут применяться при исследовании защитных характеристик вставок предохранителей, тепловых реле, проверке характеристик термопреобразователей, при исследовании динамики тепловых процессов и т. д.

Целью данной работы является разработка устройства, способного осуществлять дозирование электрической энергии при электроконтактном или электродуговом нагреве металлов, в контактной точечной сварке, в микроэлектросварке, а также при электротермическом нагреве различных материалов.

Осуществлять дозирование электрической энергии можно путем включения и своевременного отключения источника энергии от нагрузки. В процессе этого действия необходимо проводить непрерывный контроль заданной и потребляемой доз энергии при помощи высокоточных электронных измерительных устройств, способных выполнять операцию вычисления потребляемой электрической и операцию сравнения.

Однако, как и в случае с электроконтактным нагревом, аппаратура управления отслеживает и регулирует изменения только входных параметров процесса, не проводя в полной мере контроля выходного параметра, каковым является величина потребленной электрической энергии. Поэтому включение в состав аппаратуры управления средств дозирования электрической энергии, которые в процессе сварки при текущих изменениях основных электрических параметров процесса, будут контролировать количество потребляемой электрической энергии, приведет к стабилизации теплового импульса, выделяемого в зоне точечной сварки, что главным образом отразится на качестве сварных соединений.

При разработке дозирующего устройства были учтены как достоинства, так и недостатки большинства разновидностей схем умножителей. Выбор был сделан на схеме ИПУ, предназначенной для измерения активной мощности.

По мере совершенствования техники аналого-цифрового преобразования мгновенных значений сигналов рассматривалась возможность цифровой обработки большого количества дискретных и квантованных значений аналоговых сигналов, с тем, чтобы путем цифрового усреднения в течение заданного интервала времени вычислить искомый интегральный параметр.

2. ВОПРОС КВАНТОВАНИЯ ТЕКУЩЕГО ЗНАЧЕНИЯ КОЛИЧЕСТВА ЭЛЕКТРИЧЕСТВА И ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ


Процесс дозирования количества электричества или электрической энергии может осуществляться с помощью дозирующих устройств при выполнении ими ряда последовательных процедур, включающих в себя непрерывное измерение параметров исследуемых входных сигналов, интегрирование полученных значений во времени и сравнение накапливаемого результата с заранее заданной величиной, называемой дозой.

Одной из наиболее важных функций дозирующего устройства является отключение электрической нагрузки от источника энергии, которое должно произойти в момент совпадения величины установленной дозы с величиной, потребленной в нагрузке.

При измерениях количества электричества или электрической энергии измеряемая величина имеет интегральное значение, поскольку конечный результат измерений накапливается с нарастающим итогом в течение определенного времени. Проведение непрерывных и, как правило, продолжительных измерений, необходимых для выполнения процедуры дозирования, вынуждает использовать для обработки измерительной информации в качестве функциональных элементов аналоговые устройства в совокупности с цифровыми схемами. Применение для подсчета результата цифровых счетчиков, позволяющих легко наращивать разрядность, дает возможность изменять разрешающую способность измерительного блока дозирующего устройства в зависимости от существующей потребности.

Устройством, способным производить интегрирование аналоговых сигналов с преобразованием результата в цифровую последовательность импульсов, является квантователь измеряемой величины по вольт-секундной площади.

Устройство, где измеряемая электрическая величина преобразуется в последовательность импульсов, число которых подсчитывается цифровым счетчиком, согласно существующей классификации, относится к цифровым измерительным устройствам прямого число-импульсного преобразования [24].

Цифровые измерительные приборы характеризуются двумя особенностями: наличием операций аналого-цифрового преобразования сигналов и цифрового отображения результата измерения. Эти операции технически реализуются с помощью аналого-цифровых преобразователей АЦП и блока регистрации с цифровым отсчетным устройством.

При решении задач в процессе обработки и аналого-цифрового преобразования информативного параметра в конечный результат, необходимо соблюдать следующие условия:

Обеспечить линейность преобразования входного информационного параметра (сигнала) в соответствующий ему пропорциональный сигнал, подаваемый на вход квантователя;

Произвести непрерывное интегрирование входного сигнала квантователя в течение определенного времени без искажений;

Осуществить квантование проинтегрированного сигнала по вольт-секундной площади с минимальными погрешностями;

Произвести подсчет результата интегрирования, выраженный в квантах измеряемой величины.


2.1 Основные понятия и определения по вопросу квантования количества электричества Q(t) и электрической энергии W(t)


Как известно, любые физические процессы характеризуются протяженностью во времени и в пространстве и разделяются соответственно на непрерывные и прерывистые или дискретизированные как во времени, так и в пространстве. Обычно дискретизированные физические процессы или сигналы создаются искусственно для различных целей, одна из которых отвечает теме настоящей работы. Преобразование непрерывных сигналов в дискретные называют квантованием сигналов.

Квантование является одной из наиболее ответственных операций процесса измерения. Квантование широко применяется в процессе управления при необходимости воздействия на технологический процесс сигналом с параметром точно заданного размера.

Различают квантование по времени и квантование по уровню [19, 25], кроме того, существует возможность производить квантование по вольт-секундной площади. Квантование по времени заключается в замене непрерывного сигнала x(t) дискретным сигналом xk(t), значение которого для фиксированных моментов времени t1, t2,…, tn совпадают соответственно с мгновенными значениями непрерывного сигнала (рис.1а). Квантование по уровню заключается в замене непрерывного множества значений сигнала x(t) множеством дискретных значений, характеризующих величины этих уровней (рисунок 2.1,б).


Рисунок 2.1 – Квантование по времени (а) и по уровню (б)


Квантование по вольт-секундной площади заключается в замене интегрированной величины совокупности значений входных аналоговых сигналов  суммой дискретных значений отдельных квантов, преобразованных в последовательность счетных импульсов, которые несут информацию об интегральной величине входного параметра .

В отличие от тем, посвященных вопросам квантования по времени и по уровню, которые достаточно глубоко освещены в изданиях по аналого-цифровой и преобразовательной технике, вопросу квантования по вольт-секундной площади в технической литературе совершенно не уделяется внимания, хотя данный принцип квантования используется в некоторых преобразователях напряжение-частота (ПНЧ), напряжение-интервал времени (ПНВ), имеющих широкое распространение в настоящее время.

При рассмотрении вопроса об измерении и дозировании количества электричества или электрической энергии принцип «квантования по вольт-секундной площади» имеет самое непосредственное отношение к теме данной работы, поскольку наиболее точно отвечает сущности преобразования, производимого выбранным квантователем. В связи с этим, дальнейшее использование данного термина в настоящей работе является наиболее целесообразным.

По сущности рассматриваемого вопроса требуется решить задачу выбора структурной схемы квантователя измеряемой величины по вольт-секундной площади, а также произвести детальный анализ его погрешностей и найти способы их снижения.

Благодаря работе квантователя и отсчетного устройства (счетчика импульсов) происходит преобразование непрерывной входной величины в дискретную, а затем в цифровой код. Все дальнейшие операции по подсчету квантов количества электричества и электрической энергии так же, как задание и отслеживание дозы, осуществляются в цифровой форме. В связи с этим имеет смысл для наиболее точного описания рассматриваемого процесса ввести термин «цифровое дозирование».


2.2 Цифровое дозирование количества электричества и электрической энергии


Входными информационными сигналами дозирующего устройства могут служить любые параметры, как электрические, так и неэлектрические, которые с помощью первичных датчиков преобразовываются в напряжения, пропорциональные величинам входных воздействий, и поступают непосредственно на вход квантователя.

Квантование текущих значений сигналов по вольт-секундной площади заключается в интегрировании в течение определенного времени непрерывно изменяющегося входного напряжения с единовременной дискретизацией выходного параметра. Мерой такой дискретизации выступает "квант" вольт-секундной площади, размер которого зависит от электрических параметров элементов квантователя и имеет постоянное выбранное значение q0.

Выходной сигнал, равный по величине интегралу входного напряжения за определенное время, в процессе проведенного преобразования становится квантованным и дискретизированным, т.е. численно состоящим из суммы одинаковых частей определенной величиныq0i (квантов).

Если выбранная часть – "квант" имеет стабильный и известный для каждой конкретной схемы параметр, выраженный в единицах измеряемой величины, то весь данный процесс является не только счетным, но и измерительным [19].

В связи с тем, что измерительный процесс имеет определенную протяженность во времени, то для оценки величины интегрированного (итогового) значения выходного параметра требуется счетчик, способный суммировать накапливаемую квантованную величину (последовательность счетных импульсов), преобразовывая ее в определенный цифровой код. При этом результат измерения будет соответствовать произведению xN = Nxq, где Nx – отсчет счетчика импульсов.

Величина задаваемой дозы количества электричества или электрической энергии набирается с помощью кнопочного пульта и заносится в цифровой регистр, где представляется так же, как в счетчике – в двоичном коде (двоично-десятичном). Двоично-десятичный код широко используется в отсчетных устройствах цифровых приборов; двоичные разряды группируются в тетрады, каждая из которых представляет соответствующий десятичный разряд. Сравнение накапливаемой величины с заранее заданной дозой происходит непрерывно, с начала измерительного процесса до момента совпадения двоичных кодов цифр.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать