Средства учета количества электричества и электрической энергии

Существование такого недостатка приводит к выводу о необходимости использования при проектировании двухполярной схемы импульсного интегратора (ИИ), которая, в отличие от однополярной, сможет обеспечить непрерывность преобразования информации и вполне достаточную точность при проведении измерений.

Наиболее приемлемая структура построения ИИ, удовлетворяющая требованиям разработки, рассмотрена в [35] и представлена на рисунке 2.5.

Рисунок 2.5 - Структура построения ИИ


Предлагаемая в настоящей работе для применения в дозирующих устройствах схема квантователя (рисунок 2.6), в отличие от схемы (рисунок 2.5) имеет одну существенную особенность. На входе интегрирующего усилителя вместо двух биполярных транзисторов установлены два аналоговых ключа на КМОП-транзисторах, обладающих двусторонней проводимостью [13].


Рисунок 2.6 – Схема квантователя


В последнее время, в качестве аналоговых ключей чаще используют полевые транзисторы, которые обладают значительными преимуществами перед биполярными, за счет того, что проводящий канал пропускает аналоговый сигнал любой полярности. При этом гораздо легче создается гальваническая развязка канала аналогового сигнала с цепью управления и сопротивление при закрытом состоянии достаточно велико – примерно на шесть порядков выше открытого состояния [36].

В дополнение к сказанному, применение аналоговых КМОП-ключей, устанавливаемых во входной цепи интегрирующих усилителей, позволяет уменьшить суммарный ток утечки по входу и выходу ключей, определяемый, в основном, обратными токами p-n–переходов, а противофазное управление ключами уменьшает уровень динамической помехи, возникающей вследствие перезаряда емкостей затвор-сток [37].

Поэтому введение таких ключей в схему позволяет учитывать в процессе интегрирования кратковременные броски обратной полярности измеряемых величин, не превышающих по временным параметрам длительность одного такта. Подобные режимы неизбежно возникают, например, во время работы полупроводниковых вентилей выпрямительных агрегатов, питающих установки для электролиза.

Предлагаемый для использования в дозирующих устройствах ИИ содержит в своем составе инвертор, повторитель напряжения, аналоговые электронные ключи, интегрирующий усилитель и компаратор. Данный преобразователь является двухполярным, т.е. напряжение на выходе интегрирующего усилителя в процессе работы периодически меняет полярность на противоположную.

Временная диаграмма работы ИИ представлена на рисунок 2.7. Входящий в состав преобразователя компаратор, собран на основе операционного усилителя по схеме триггера Шмитта и имеет два устойчивых состояния. Компаратор напряжения срабатывает в тот момент времени, когда напряжение на его неинвертирующем входе переходит через нулевой уровень. Рассмотрение принципа действия импульсного интегратора следует начать с момента нахождения компаратора в одном из устойчивых состояний.

Предположим, что в момент времени t = t0 = 0 (рисунок 2.7) на вход интегрирующего усилителя через замкнутый электронный ключ SW1 подается входное напряжение положительной полярности UВХ1(t). При этом, пропорционально изменению заряда конденсатора С, начинает изменяться выходное напряжение интегрирующего усилителя от некоторого начального значения UИ (t) =UНАЧ =+UП в направлении смены полярности напряжения на выходе интегратора до величины, когда этот уровень станет равным пороговому значению -UП напряжения срабатывания компаратора.

На рисунок 2.7 представлены временные диаграммы, отражающие процесс заряда-разряда интегрирующей емкости преобразователя в зависимости от изменения текущих значений уровня входного сигнала. Величина заряда конденсатора С за время Dt1 = t1 - t0 составит


 (2.10)


Рисунок 2.7 - Временная диаграмма работы ИИ

В момент времени t = t1 при достижении на выходе интегратора порогового уровня UИ(t) = - произойдет наполнение интегратора и компаратор переключит электронные ключи, после чего на вход интегрирующего усилителя через ключ SW2 будет подано инвертированное напряжение -UВХ2(t). В результате этого действия направление заряда интегрирующей емкости изменится на противоположное и начнется ее перезаряд, который будет происходить в течение времени Dt2 = t2 - t1, пока напряжение на выходе усилителя не станет равным пороговому уровню UИ(t) =+UП. При этом величина заряда емкости С за время Dt2 составит


 (2.11)


В момент окончания второго такта напряжение на выходе интегрирующего усилителя достигнет значения, с которого был начат процесс заряда UИ(t) =UНАЧ =+UП. Если пороговые уровни срабатывания компаратора выдерживать равными по абсолютной величине |+UП| = |-UП|, то будет соблюдаться баланс количества электричества (Q1 = Q2) при заряде и разряде интегрирующей емкости. За один такт интегрирования в токовой цепи ИИ будет протекать строго дозированная порция – "квант" количества электричества q0. Величина "кванта" в любой схеме квантователя должна быть стабильной для каждого такта интегрирования q0 = Q1= Q2=…= QN, т.е. обладать постоянной вольт-секундной площадью S0 = const. Стабильность вольт-секундной площади "кванта" в первую очередь зависит от точности установки уровней порогов срабатывания компаратора напряжения, от величины дрейфа интегрирующего усилителя и от качества работы аналоговых ключей на его входе [19].

На графике (рисунок 2.7) вольт-секундная площадь, находящаяся под кривой текущих значений напряжений входного сигнала UВХ(t), пропорционального току электролиза, отражает процесс накопления заряда (количества электричества), который происходит при протекании тока через нагрузку в течение определенного времени. Эта площадь разделена на множество равных площадок S0, соответствующих "квантам" количества электричества q0, каждый из которых формируется за один такт интегрирования.

Таким образом, импульсный интегратор одновременно с операцией интегрирования производит квантование измеряемой величины – формирование «квантов» количества электричества, путем квантования интегрального значения входной величины по вольт-секундной площади. При каждом наполнении интегратора на выходе ИИ происходит формирование счетного импульса. Величина интеграла за время от начала отсчета до момента появления последнего импульса будет прямо пропорциональна итоговому числу импульсов: [20]


. (2.12)


Линейность преобразования при накоплении заряда на конденсаторе достигается за счет работы интегрирующего усилителя на линейном участке заряда с постоянным наклоном характеристики. Оптимальная линейность преобразования обеспечивается при задании соответствующих уровней порогов срабатывания компаратора (+UП и -UП), которые рекомендуется выдерживать в диапазоне ±1,2 В [20].

Цикл работы ИИ включает два такта интегрирования, которые соответствуют времени формирования двух счетных импульсов.

Использование двухполярной схемы интегрирующего усилителя приносит существенный положительный эффект. Такое схемное решение, во-первых, устраняет неустойчивость работы компаратора в зоне нуля [20], а, во-вторых, практически в два раза расширяет по сравнению с однополярной схемой динамический диапазон интегрирования входного сигнала.

Все перечисленные положительные качества представленной схемы импульсного интегратора обеспечивают предпочтительное применение ее в проектируемых устройствах дозирования.


3. ПРОЕКТИРОВАНИЕ УСТРОЙСТВ ДОЗИРОВАНИЯ


3.1 Разработка схемы устройства цифрового дозирования количества электричества

Электрическая энергия, потребляемая в нагрузке за определенный промежуток времени вычисляется по формуле:


       (3.1)


где    u, i, p – мгновенные значения напряжения, тока и мощности на нагрузке;

t – время интегрирования.

Структура построения дозирующего устройства основывается на зависимости, характеризуемой выражением (3.1), из которой следует, что электронный дозатор электрической энергии в режиме реального времени должен выполнять процедуру вычисления произведения текущих значений напряжения и тока нагрузки. Результат произведения должен подвергаться интегрированию совместно с операцией квантования по вольт-секундной площади выходного напряжения интегратора (см. главу 1). Процесс квантования заключается в формировании счетных импульсов, а конечный результат оценивается по их сумме в течение всего времени дозирования. Когда величина потребленной электрической энергии сравняется с заданным значением должно произойти выключение устройства коммутации и процесс дозирования прекратится.

Согласно алгоритму работы электронного дозатора в его состав должны входить первичные преобразователи напряжения и тока, множительное, интегрирующее устройства и квантователь. Для придания прибору функции дозирования его необходимо дополнить устройством коммутации электрической энергии, блоком задания дозы и блоком управления устройством коммутации.

Состав предлагаемого электронного дозатора электрической энергии представлен на рисунке 3.1.


Рисунок 3.1 - Структурная схема электронного дозатора электрической энергии: 1 – электрическая нагрузка; 2 - измерительный преобразователь (трансформатор) напряжения; 3 - измерительный преобразователь (трансформатор) тока; 4 - множительное устройство; 5 – импульсный интегратор; 6 – счетчик импульсов; 7 – блок двоично-десятичных дешифраторов; 8 – блок позиционных декадных переключателей; 9 - блок управления ключом коммутации; 10 - ключ запуска электронного дозатора электрической энергии; 11 - ключ коммутации электроэнергии.

Работает электронный дозатор электрической энергии следующим образом. Перед подачей энергии в электрическую цепь с нагрузкой 1 доза (количество) электроэнергии, которая требуется для проведения предстоящей технологической операции, предварительно устанавливается с помощью декадных переключателей блока задания дозы 8, имеющих десять фиксированных положений. Количество переключателей равно числу десятичных разрядов цифры, соответствующей определенному значению задаваемой дозы, в заранее обусловленных для конкретной операции единицах электроэнергии: в ваттсекундах, в киловаттсекундах, в киловаттчасах и т.п. В момент замыкания кнопочного ключа запуска электронного дозатора электроэнергии 10 в блоке управления ключом коммутации 9 формируется сигнал на включение, который воздействует на ключ коммутации 11 и электрическая нагрузка 1 подключается к цепи источника энергии. Сигналы uu и ui, поступающие на входы аналогового множительного устройства 4 с измерительных преобразователей 2 и 3, пропорциональны текущему значению напряжения на нагрузке:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать