Свойства газов

Итак, сжатие газа внешней силой вызывает его нагрева­ние, а расширение газа сопровождается его охлаждением. Это явление в некоторой мере имеет место всегда, но осо­бенно резко заметаю тогда, когда обмен теплотой с окружающими телами сведен к минимуму, ибо такой обмен может в большей или меньшей степени компенсировать изменение температуры.

Процессы, при которых передача теплоты настолько нич­тожна, что ею можно пренебречь, называют адиабатиче­скими.   

Возвратимся к вопросу, поставленному в начале главы. Как обеспечить постоянство температуры газа, не­смотря на изменения его объема? Очевидно, для этого надо непрерывно передавать газу теплоту извне, если он расши­ряется, и непрерывно отбирать от него теплоту, передавая ее окружающим телам, если газ сжимается. В частности, температура газа остается достаточно постоянной, если рас­ширение или сжатие газа производится очень медленно, а передача теплоты извне или вовне может происходить с до­статочной быстротой. При медленном расширении теплота от окружающих тел передается газу и его температура сни­жается так мало, что этим снижением можно пренебречь. При медленном сжатии теплота, наоборот, передается от газа к окружающим телам, и вследствие этого температура его повышается лишь ничтожно мало.

Процессы, при которых температура поддерживается неизменной, называют изотермическими.         

 

Закон Бойля — Мариотта

 Перейдем теперь к бо­лее подробному изучению вопроса, как меняется давление некоторой массы газа, если температура его остается неиз­менной и меняется только объем газа. Мы уже выяснили, что такой изотермический процесс осуществляется при условии постоянства температуры тел, окружающих газ, и настолько медленного изменения объема газа, что тем­пература газа в любой момент процесса не отличается от температуры окружающих тел.

Мы ставим, таким образом, вопрос: как связаны между собой объем и давление при изотермическом изменении состояния газа? Ежедневный опыт учит нас, что при умень­шении объема некоторой массы газа давление его увеличи­вается. В качестве примера можно указать повышение уп­ругости при накачивании футбольного мяча,  велосипед­ной или автомобильной шины. Возникает вопрос: как именно увеличивается давление газа при уменьшении объема, если температура газа остается неизменной?

Ответ на этот вопрос дали исследования, произведенные в XVII столетии английским физиком и химиком Робертом Бойлем (1627—1691) и французским физиком Эдемом Мариоттом (1620—1684).

Опыты, устанавливающие зависимость между объемом и давлением газа, можно воспроизвести: на вертикальной стойке, снабжённой делениями, находятся стеклянные трубки А и В, соединенные резиновой трубкой С. В трубки налита ртуть. Трубка В сверху открыта, на трубке А имеется кран. Закроем этот кран, заперев таким образом некоторую массу воздуха в трубке А. Пока мы не сдвигаем трубок, уровень ртути в обеих трубках одинаков. Это значит, что давление воздуха, запертого в трубке А, такое же, как и давление окружающего воздуха.

Будем теперь медленно поднимать трубку В. Мы увидим, что ртуть в обеих трубках будет подниматься, но не одинаково: в трубке В уровень ртути будет все время выше, чем в А. Если же опустить трубку В, то уровень ртути в обоих коленах понижается, но в трубке В понижение больше, чем в А.

Объем воздуха, запертого в трубке А, можно отсчитать по делениям трубки А. Давление этого воздуха будет отли­чаться от атмосферного на величину давления столба ртути, высота которого равна разности уровней ртути в трубках А и В. При. поднятии трубки В давление столба ртути при­бавляется к атмосферному давлению. Объем воздуха в А при этом уменьшается. При опускании трубки В уровень ртути в ней оказывается ниже, чем в А, и давление столба ртути вычитается из атмосферного давления; объем воздуха в А  соответственно увеличивается.

Сопоставляя полученные таким образом значения давле­ния и объема воздуха, запертого в трубке А, убедимся, что при увеличении объема некоторой массы воздуха в опреде­ленное число раз давление его во столько же раз умень­шается, и наоборот. Температуру воздуха в трубке при на­ших опытах можно считать неизменной.

Подобные же опыты можно" произвести и с другими га­зами. Результаты получаются такие же.

Итак, давление некоторой массы газа при неизменной тем­пературе обратно пропорционально объему газа (закон Бойля—Мариотта).

Для разреженных газов закон Бойля — Мариотта вы­полняется с высокой степенью точности. Для газов же силь­но сжатых или охлажденных обнаруживаются заметные отступления от этого закона.


Формула, выражающая закон Бойля — Мариотта.


  (2)


График, выражающий закон Бойля — Мариотта.


В физике и в технике часто пользуются графиками, показы­вающими зависимость давления газа от его объема. Начер­тим такой график для изотермического процесса. Будем по оси абсцисс откладывать объем газа, а по оси ординат—его давление.


та.

Возьмем пример. Пусть давление данной-массы газа при объеме 1 м3 равно 3,6 кГ/см2. На основании закона, Бойля — Мариотта рассчитаем, что при объеме, равном 2 м3, давле­ние равно 3,6*0,5 кГ/см2=1,8кГ/см2. Продолжая такие расчеты,, получим следующую табличку:

V(в м3)

1

2

3

4

5

6

PкГ1см2)

3,6

1,8

1,2

0,9

0,72

0,6


Нанося эти данные на чертеж в виде точек, абсциссами кото­рых являются значения V, а ординатами — соответствующие значения Р, получим кривую линию— график изотерми­ческого процесса в газе (рисунок выше).


Зависимость между плотностью газа и его давле­нием

Вспомним, что плотностью вещества называется масса, заключенная в единице объема. Если мы как-нибудь изменим объем данной массы газа, то изменится и плот­ность газа. Если, например, мы уменьшим объем газа в пять раз, то плотность газа увеличится в пять раз. При этом увеличится и давление газа; если температура не изме­нилась, то, как показывает закон Бойля — Мариотта, давление увеличится тоже в пять раз. Из этого примера видно, что при изотермическом процессе давление газа изме­няется прямо пропорционально его плотности.

Обозначив плотности газа при давлениях  и  буквами  и , можем написать:

    (3)

Этот важный результат можно считать другим и более существенным выражением закона Бойля — Мариотта. Дело в том, что вместо объема газа, который зависит от случай­ного обстоятельства — оттого, какая выбрана масса газа,— в формулу (3) входит плотность газа, которая, также как и давление, характеризует состояние газа и вовсе не зависит от случайного выбора его массы.

Молекулярное толкование закона Бойля — Ма­риотта.

В предыдущей главе мы выяснили на основа­нии закона Бойля — Мариотта, что при неизменной темпе­ратуре давление газа пропорционально его плотности. Если плотность газа меняется, то во столько же раз меняется и число молекул в 1 см3. Если газ не слишком сжат и движение газовых молекул можно считать совершенно независимым друг от друга, то число ударов за 1 сек на 1 см2 стенки сосуда про­порционально числу молекул в 1 см3. Следовательно, если средняя скорость молекул не меняется с течением времени (мы уже видели, что в макромире это означает постоянство температуры), то давление газа должно быть пропорцио­нально числу молекул в 1 см3, т. е. плотности газа. Таким образом, закон Бойля — Мариотта является прекрасным подтверждением наших представлений о строении газа.

Однако, закон Бойля — Ма­риотта перестает оправдываться, если перейти к большим давлениям. И это обстоятельство может быть прояснено, как считал еще М. В. Ломоносов, на основании молекулярных представлений.

С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объем газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки.

С другой стороны в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к дру­гим молекулам гораздо большую часть времени, чем моле­кулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направле­нию к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях. более существенным является второе обстоятельство и произве­дение PV немного уменьшается. При очень высоких давле­ниях большую роль играет первое обстоятельство и произве­дение PV увеличивается.

Итак, и сам закон Бойля — Мариотта и отступления от него подтверждают молекулярную теорию.

Изменение объема газа при изменении темпера­туры

 Мы изучали, как зависит давление некоторой массы газа от температуры, если объём остается неизменным, и от объема, занимаемого газом, если температура остается неизменной. Теперь установим, как ведет себя газ, если меняются его температура и объем, а давление остается постоянным.

Рассмотрим такой опыт. Коснемся Ладонью сосуда, изо­браженного на рис., в котором горизонтальный столбик ртути запирает .некоторую массу воздуха. Газ в сосуде нагреется, его давление повысится, и ртутный столбик нач­нет перемещаться вправо. Движение столбика пре­кратится, когда благодаря увеличению объема возду­ха в сосуде давление его сделается равным наруж­ному. Таким образом, в конечном результате этого опыта объем воздуха при нагревании увеличился а давление осталось неизменным.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать