Свойства газов

Плотности некоторых газов

Газ

Плотность при нор­мальных условиях в г/л или в кг/м3

Отношение к плотности воз­духа

Отноше­ние к плотно­сти во­дорода

Молеку­лярный или атом­ный вес

Воздух

1,293

0,0899 1,25 1,43 1,977 0,179

1

0,0695 0,967 1.11 1,53 0,139

14,5

1 14 16 22 2

29 (средний)

Водород (Н2)

0,0899

0,0695

1

2

Азот (N2)

1,25

0,967

14

28

Кислород (О2)

1,43

1,11

16

32

Углекислый газ (СО2)

1,977

1,53

22

44

Гелий(Не)

0,179

0,139

2

4


Определение плотности газа можно осуществить так. Взвесим колбу с краном дважды: один раз откачав из нее по возможности полностью воздух, другой раз наполнив колбу исследуемым газом до давления, которое должно быть известно. Разделив разность весов на объем колбы, который надо определить предварительно, найдем плотность газа при данных условиях. Затем, пользуясь уравнением состоя­ния газов, легко найдем плотность газа при нормальных условиях dн. Действительно, положим в формуле (10) Р2==Рн, V2=Vн, Т2=Тн  и, умножив числитель и знаменатель

формулы на массу газа m, получим:

Отсюда, принимая во внимание, что  и  находим:

Результаты измерений плотности некоторых газов приве­дены в таблице выше.

Последние два столбца указывают на пропорциональ­ность между плотностью газа и его молекулярным весом (в случае гелия — атомным весом).

Закон Авогадро

 Сравнивая числа предпоследнего столбца таблицы с молекулярными весами рассматривае­мых газов, легко заметить, что плотности газов при одина­ковых условиях пропорциональны их молекулярным весам. Из этого факта следует весьма существенный вывод. Так как молекулярные веса относятся как массы молекул, то

, где d – плотность газов, а m – массы их молекул.

массы их молекул. С другой стороны, массы газов М1 и М2, заключенных в одинаковых объемах V, относятся как плотности их:

  (11)

обозначив числа молекул первого и второго газов, за­ключенных в объеме V, буквами N1 и N2, можем написать, что общая масса газа равна массе одной его молекулы, умно­женной на число молекул: М1=т1N1  и М2=т2N2 поэтому

Сопоставляя этот результат с формулой  , найдем,


что N1=N2. Итак, при одинаковых, давлении и температуре равные объемы различных газов содержат одинаковые числа молекул.

Этот закон был открыт итальянским химиком Амедео Авогадро (1776—1856) на основании химических исследований. Он относится к газам, сжатым не очень сильно (напри­мер, к газам под атмосферным давлением). В случае сильно сжатых газов считать его справедливым нельзя.

Закон Авогадро означает, что давление газа при опреде­ленной температуре зависит только от числа молекул в еди­нице объёма газа, но не зависит от того, какие это молеку­лы  тяжелые или легкие. Уяснив это, легко понять суть закона Дальтона. Согласно закону Бойля — Мариотта, если мы увеличиваем плотность газа, т. е. добавляем в определен­ный объем некоторое число молекул этого газа, мы увеличи­ваем давление газа. Но согласно закону Авогадро, такое же повышение давления должно быть получено, если мы вместо добавления молекул первого газа добавим такое же число молекул другого газа. Именно в этом и состоит закон Даль­тона, который утверждает, что можно увеличить давление газа, добавляя в тот же объем молекулы другого газа, и если число добавленных молекул то же, что и в первом случае, то получится то же самое увеличение давления. Ясно, что закон Дальтона является прямым следствием закона Авогадро.



Грамм-молекула. Число Авогадро.

Число, даю­щее отношение масс двух молекул, указывает в то же время и отношение масс двух порций вещества, содержащих оди­наковые числа молекул. Поэтому 2 г водорода (молекуляр­ный вес На равен 2), 32 г кислорода (молекулярный вес Од равен 32) и 55,8 г железа (его молекулярный вес совпадает с атомным, равным 55,8) и т. д. содержат одно и то же число молекул.

Количество вещества, содержащее число граммов, рав­ное его молекулярному весу, называется грамм-молекулой или молем.

Из сказанного вытекает, что моли разных веществ со­держат одно и то же число молекул. Поэтому часто оказы­вается удобным пользоваться молем как особой единицей, содержащей разное число граммов для различных веществ, но одинаковое число молекул.

Число молекул в одном моле вещества, получившее наз­вание числа Авогадро, является важной физической вели­чиной. Для определения числа Авогадро были сделаны мно­гочисленные и разнообразные исследования. Они относятся к броуновскому движению, к явлениям электролиза и ряду Других. Эти исследования привели к довольно согласным результатам. В настоящее время принимают,   что число Авогадро равно

                 N= 6,02*1023 моль-1.

Итак, 2 г водорода, 32 г кислорода и т. д. содержат по 6,02*1023 молекул. Чтобы представить себе громадность этого числа, вообразим пустыню площадью в 1 миллион квадратных километров, покрытую слоем песка толщиной 600 м. Тогда, если на каждую песчинку приходится объем 1 мм3, то общее число песчинок в пустыне будет равно числу Авогадро.

Из закона Авогадро следует, что моли разных газов имеют при одинаковых условиях одинаковые объемы. Объем одного моля при нормальных условиях можно вычислить, разде­лив молекулярный вес какого-нибудь газа на его плотность при нормальных условиях.

Таким образом, объем моля любого газа при нормальных условиях равен 22400 см3.                 


Скорости молекул газа

 Каковы скорости, с кото­рыми движутся молекулы, в частности молекулы газов? Этот вопрос естественно возник тотчас же, как были развиты представления о молекулах. Долгое время скорости молекул удавалось оценить только косвенными расчетами, и лишь сравнительно недавно были разработаны способы прямого определения скоростей газовых молекул.

Прежде всего уточним, что надо понимать под скоростью молекул. Напомним, что вследствие беспрестанных столкно­вений скорость каждой отдельной молекулы все время ме­няется: молекула движется то быстро, то медленно, и в те­чение некоторого времени скорость молекулы принимает множество самых различных значений. С другой стороны, в какой-либо определенный момент в гро­мадном числе молекул, составляющих рассматриваемый объем газа, имеются молекулы с самыми различными ско­ростями. Очевидно, для характеристики состояния газа надо говорить о некоторой средней скорости. Можно счи­тать, что это есть средняя величина скорости одной из моле­кул за достаточно длительный промежуток времени или что это есть средняя величина скоростей всех молекул газа в данном объеме в какой-нибудь момент времени.

Остановимся на рассуждениях, которые дают возмож­ность подсчитать среднюю скорость газовых молекул.

Давление газа пропорционально птv2, где т — масса молекулы, v — средняя скорость, а п — число молекул в единице объема. Более точный расчет приводит к формуле

   (12)

Из формулы (12) можно вывести ряд важных следст­вий. Перепишем формулу (12) в таком виде:

где e  — средняя кинетиче­ская энергия одной молекулы. Обозначим давление газа при температурах Т1 и Т2 буквами р1 и р2 а средние кинетичес­кие энергии молекул при этих температурах e1 и e2. В таком случае


,                  и            

Сравнивая это соотношение  с законом   Шарля

    

найдем:

Итак, абсолютная температура газа пропорциональна средней кинетической энергии молекул газа. Так как средняя кине­тическая энергия молекул пропорциональна квадрату сред­ней скорости молекул, то наше сопоставление приводит к выводу, что абсолютная температура газа пропорцио­нальна квадрату средней скорости молекул газа и что ско­рость молекул растет пропорционально корню квадратному из абсолютной температуры.

Средние скорости молекул некоторых газов

Газ

Масса моле­кулы, г

Средняя скорость,

м/сек

Водород

0,33*10-23

1760

Кислород

5,3*10-23

425

Азот

4,6*10-23

450

Углекислый газ

7,3*10-23

360

Пары воды

3,0*10-23

570


Как видно, средние скорости молекул весьма значи­тельны. При комнатной температуре они обычно достигают сотен метров в секунду. В газе средняя скорость движения молекул примерно в полтора раза больше, чем скорость звука в этом же газе.

На первый взгляд этот результат кажется очень стран­ным. Кажется, что молекулы не могут двигаться с такими большими скоростями: ведь диффузия даже в газах, а тем более в жидкостях, идет сравнительно очень медленно, во всяком случае гораздо медленнее, чем распространяется звук. Дело, однако, в том, что, двигаясь, молекулы очень часто сталкиваются друг с другом и при этом меняют на­правление своего движения. Вследствие этого они двигаются то в одну, то в другую сторону, в основном толкутся на од­ном месте. В результате, несмотря на большую скорость движения в промежутках между столкновениями, несмотря на то, что молекулы нигде не задерживаются, они продвигаются в каком-либо определенном направлении до­вольно медленно.

Таблица  показывает также, что различие в скоростях разных молекул связано с различием их масс. Это обстоя­тельство подтверждается рядом наблюдений. Например, водород проникает сквозь узкие отверстия (поры) с большей скоростью, чем кислород или азот. Можно обнаружить это на таком опыте.

Стеклянная воронка закрыта пористым сосудом или за­клеена, бумагой и опущена концом в воду. Если воронку накрыть стаканом, под который впустить водород (или светильный газ), то увидим, что уровень воды в конце воронки понизится и из нее начнут выходить пузырьки. Как это объяснить?

Сквозь узкие поры в сосуде или в бумаге могут прохо­дить и молекулы воздуха (изнутри воронки под стакан), и молекулы водорода (из-под стакана в воронку). Но быстрота этих процессов различна. Раз­личие в размерах молекул не играет при этом существенной роли, ибо различие это невели­ко, особенно по сравнению с раз­мерами пор: молекула водорода имеет «длину»  около 2,3*10-8 см, а молекула кислоро­да или азота—около 3*10-8 см, поперечник же отверстий, кото­рые представляют собой поры, в тысячи раз больше. Большая скорость проникновения водоро­да через пористую стенку объ­ясняется большей скоростью движения его молекул. Поэтому молекулы водорода быстрее про­никают из стакана в воронку. В результате в воронке полу­чается накопление молекул, давление увеличивается и смесь газов в виде пузырьков выходит наружу.

Подобными приборами пользуются для обнаружения примеси рудничных газов к воздуху, могущих вызвать взрыв в рудниках.

 

Теплоемкость газов

 Предположим, что мы имеем 1 г газа. Сколько надо сообщить ему теплоты для того, чтобы температура его увеличилась на 1°С, другими словами, ка­кова удельная теплоемкость газа? На этот вопрос, как пока­зывает опыт, нельзя дать однозначного ответа. Ответ зависит от того, в каких условиях происходит нагревание газа. Если объем его не меняется, то для нагревания газа нужно определенное коли­чество теплоты; при этом увеличивается также давление газа. Если же нагревание ведется так, что давление его остается неизменным, то потребуется иное, большее коли­чество теплоты, чем в первом случае; при этом увеличится объем газа. Наконец, возможны и иные случаи, когда при нагре­вании меняются и объем, и дав­ление; при этом потребуется ко­личество теплоты, зависящее от того в какой мере происходят эти изменения. Согласно сказан­ному газ может иметь самые раз­нообразные удельные теплоемко­сти, зависящие от условий на­гревания. Выделяют обычно две из всех этих удельных теплоемкостей: удельную теплоемкость при постоянном объеме (Сv) и удельную теплоемкость при по­стоянном давлении (Cp).

Для определения Сv надо нагревать газ, помещенный в замкнутый сосуд. Расширением самого сосуда при нагревании можно пренебречь. При определении Cp нуж­но нагревать газ, помещенный в цилиндр, закрытый порш­нем, нагрузка на который остается неизменной.

Теплоемкость при постоянном давлении Cp больше, чем теплоемкость при постоянном объеме Cv. Действительно, при нагревании 1 г газа на 1° при постоянном объеме подводимая теплота идет только на увеличение внутренней энергии газа. Для нагревания же на 1° той же массы газа при по­стоянном давлении нужно сообщить ему тепло, за счет которого не только увеличится внутренняя энергия газа, но и будет совершена работа, связанная с расширением газа. Для получения Сp к величине Сv надо прибавить еще количе­ство теплоты, эквивалентное работе, совершаемой при рас­ширении газа.


Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать