Свойства газов

Если бы мы знали, как изменилась в нашем опыте температура воздуха в сосуде, и точно измерили, как меняется объем Газа, мы могли бы изучить это явление с количественной стороны. Очевид­но, что для этого надо заключить сосуд в оболочку, за­ботясь о том, чтобы все части прибора имели одну и ту же температуру, точно измерить объем запертой массы газа, затем изменить эту температуру и измерить прира­щение объема газа.

 

Закон Гей-Люссака.

Количественное Исследова­ние зависимости объема газа от температуры при неизмен­ном давлении было произведено французским физиком и химиком Гей-Люссаком (1778—1850) в 1802 г.

Опыты показали, что увеличение объема газа пропорцио­нально приращению температуры. Поэтому тепловое расши­рение газа можно, так же как и для других тел, охарактери­зовать при помощи коэффициента объемного расширения b. Оказалось, что для газов этот закон соблюдается гораздо лучше, чем для твердых и жидких тел, так что коэф­фициент объемного расширения газов есть величина, практически постоянная даже при очень значительных повыше­ниях Температуры, тогда как для жидких и твердых тел это; постоянство соблюдается лишь приблизительно.

Отсюда найдем:

  (4)

Опыты Гей-Люссака и других обнаружили замечательный результат. Оказалось, что коэффициент объемного расширения у всех газов одинаков (точнее, почти одинаков)   и равняется  = 0,00366 . Таким образом,  при нагревании при постоянном давлении на1° объем некоторой массы газа увеличивается на  того объема, который эта масса газа занимала при 0°С (закон Гей-Люссака).

Как видно, коэффициент расширения газов совпадает с их термическим коэффициентом давления.

Следует отметить, что тепловое расширение газов весьма значительно, так что объем газа  при 0°С заметно отли­чается от объема при иной, например при комнатной, температуре. Поэтому, как уже упоминалось, в случае газов нельзя без заметной ошибки заменить в формуле (4) объем  объемом V. В соответствии с этим формуле расширения для газов удобно придать следующий вид. За начальный объем примем объем  при температуре 0°С. В таком случае приращение температуры газа t равно температуре, отсчитанной по шкале Цельсия t. Следова­тельно, коэффициент объемного расширения

              откуда             (5)

Так как    

То                (6)

Формула (6) может служить для вычисления объема как при температуре выше ОoС, так и при температуре ниже 0°С. В этом последнем случае I отрицательно. Следует, однако, иметь ввиду, что закон Гей-Люссака не оправды­вается, когда газ сильно сжат или настолько охлажден, что он приближается к состоянию сжижения. В этом случае пользоваться формулой (6) нельзя.

Графики, вы­ражающие законы Шар­ля и Гей-Люссака

 Бу­дем по оси абсцисс от­кладывать температуру газа, находящегося в по­стоянном объеме, а по оси ординат — его дав­ление. Пусть при 0°С давление газа равно 1 кГ|см2. Пользуясь законом Шарля, мы можем вычислить его давление при 1000 С, при 200°С, при 300°С и т. д.



100°

200°

300°

400°

500°

Давление (в  кГ1см2)

1

1,37

1,73

2,10

2,47

2,83


Нанесем эти данные на график. Мы получим наклон­ную прямую линию. Мы можем продолжить этот график и в сторону отрицательных температур. Однако, как уже было указано, закон Шарля применим только до температур не очень низких.. Поэтому продолже­ние графика до пересечения с осью абсцисс, т. е. до точки где давление равно нулю, не будет соответствовать поведению реального газа.


Абсолютная температура

 Легко видеть, что дав­ление газа, заключенного в постоянный объем, не является прямо пропорциональным температуре, отсчитанной по Шкале Цельсия. Это ясно, например, из таблицы, приведен­ной в предыдущей главе. Если при 100° С давление газа равно 1,37 кГ1см2, то при 200° С оно равно 1,73 кГ/см2. Температура, отсчитанная по термометру Цельсия, увеличи­лась вдвое, а давление газа увеличилось только в 1,26 раза. Ничего удивительного, конечно, в этом нет, ибо шкала термометра Цельсия установлена условно, без всякой связи с законами расширения газа. Можно, однако, пользуясь газовыми законами, установить такую шкалу температур, что давление газа будет прямо пропорционально темпера­туре, измеренной по этой новой шкале. Нуль в этой новой шкале называют абсолютным нулем. Это наз­вание принято потому, что, как было доказано английским физиком Кельвином (Вильямом Томсоном) (1824—1907), ни одно тело не может быть охлаждено ниже этой темпера­туры. В соответствии с этим и эту новую шкалу называют шкалой абсолютных температур. Таким образом, абсолют­ный нуль указывает температуру, равную -273° по шкале Цельсия, и представляет собой температуру, ниже которой не может быть ни при каких условиях охлаждено ни одно тело. Температура, выражающаяся цифрой 273°+ пред­ставляет собой абсолютную температуру тела, имеющего по шкале Цельсия температуру, равную . Обычно абсолют­ные температуры обозначают буквой Т. Таким образом, 273о+=. Шкалу абсолютных температур часто, назы­вают шкалой Кельвина и записывают Т° К. На основании сказанного

  (7)

Полученный результат можно выразить словами: давление данной массы газа, заключенной в постоянный объем, прямо пропорционально абсолютной температуре. Это — новое выражение закона Шарля.

Формулой (6) удобно пользоваться и в том случае, когда давление при 0°С  неизвестно.


Объем газа и абсолютная температура

 Из фор­мулы (6), можно получить следующую формулу:

  (8)

- объем некоторой массы газа при постоянном давлении прямо пропорционален абсолютной температуре. Это — новое выражение закона Гей-Люссака.

Зависимость плотности газа от температуры

Что происходит с плотностью некоторой массы газа, если тем­пература повышается, а давление остается неизменным?

Вспомним, что плотность равна массе тела, деленной на объем. Так как масса газа постоянна, то при нагревании плотность газа уменьшается вот столько раз, во сколько уве­личился объем.

Как мы знаем, объем газа прямо пропорционален абсо­лютной температуре, если давление остается постоянным. Следовательно, плотность газа при неизменном давлении обратно пропорциональна абсолютной температуре. Если  и — плотности газа при температурах       и  , то имеет место соотношение


   (9)

 

 

 

 Объединенный закон газового состояния

Мы рас­сматривали случаи, когда одна из трех величин, характе­ризующих состояние газа (давление, температура и объем), не изменяется. Мы видели, что если температура постоянна, то давление и объем связаны друг с другом законом Бойля— Мариотта; если объем постоянен, то давление и температура связаны законом Шарля; если постоянно давление, то объем и температура связаны законом Гей-Люссака. Установим связь между давлением, объемом и температурой некоторой массы газа, если изменяются все три эти величины.

Пусть начальные объем, давление и абсолютная темпера­тура некоторой массы газа равны V1, P1 и Т1 конечные — V2, P2 и T2  - Можно представить себе, что переход от началь­ного к конечному состоянию произошел в два этапа. Пусть, например, сначала изменился объем газа от V1 до V2, причем температура Т1 осталась без изменения. Получившееся при этом давление газа обозначим Pср.. Затем изменилась тем­пература от Т1 до T2 при постоянном объеме, причем давле­ние изменилось от Pср до P2. Составим таблицу:

Закон Бойля — Мариотта

Р1V1t1

PcpV2T1

Закон Шарля

PcpV2T1

P2V2T2

Применяя, к первому переходу закон Бойля-Мариотта запишем

  или   

Применяя ко второму переходу закон Шарля, можно напи­сать

 

Перемножив эти  равенства почленно и сокращая      на Pcp получим:

           (10)

Итак, произведение объема некоторой массы, газа на его дав­ление пропорционально абсолютной температуре газа. Это и есть объединенный закон газового состояния или уравнение состояния газа.

 

 

Закон Дальтона

До сих пор мы говорили о дав­лении какого-нибудь одного газа — кислорода, водорода и т. п. Но в природе и в технике мы очень часто имеем дело со смесью нескольких газов. Самый важный пример этого — воздух, яв­ляющийся смесью азота, кислорода, аргона, углекислого газа и других газов. От чего зависит давление сме­си газов?

Поместим в колбу кусок вещест­ва, химически связывающего кисло­род из воздуха (например, фосфор), и быстро закроем колбу пробкой с труб­кой. присоединенной к ртутному ма­нометру . Через некоторое время весь кислород воздуха соеди­нится с фосфором. Мы увидим, что манометр покажет меньшее давление, чем до удаления кислорода. Значит, присутствие кислорода в воздухе уве­личивает его давление.

Точное исследование давления смеси газов было впервые произведено английским химиком Джоном Дальтоном (1766—1844) в 1809 г. Давление, которое имел бы каждый из газов, составляющих смесь, если бы удалить остальные газы из объема, занимаемого смесью, называют парциальным давлением этого газа. Дальтон нашел, что давление смеси газов равно сумме парциальных давлений их (закон Дальтона). Заметим, что к сильно сжатым газам закон Дальтона неприменим, так же как и закон Бойля — Мариотта.

Как истолковать закон Дальтона с точки зрения молеку­лярной теории, скажу немного далее.

Плотности газов

 Плотность газа является одной из важнейших характеристик его свойств. Говоря о плот­ности газа, обычно имеют в виду его плотность при нор­мальных условиях (т. е. при температуре 0° С и давлении 760 мм рт. ст.). Кроме того, часто пользуются относитель­ной плотностью газа, под которой подразумевают отноше­ние плотности данного газа к плотности воздуха при тех же условиях. Легко видеть, что относительная плотность газа не зависит от условий, в которых он находится, так как сог­ласно законам газового состояния объемы всех газов меняются при изменениях  давления и температуры одинаково.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать