Теоретические основы электротехники

R13 = R1×R3/ (R1+R3) = 2×15\ (2+15) = 1,76 Ом


Полное сопротивление цепи


Rц = R2+R13 = 5 +1,76 = 6,76 Ом


б) Ток I2 в неразветвленной части цепи:


I2 = E2/Rц = 10/6,76 = 1,47A


в) напряжение на сопротивлении R3


U3 = U13= I 2×R13

U3 = 1,47×1,76 = 2,6B


г) частичный ток I3''


I3''= U3/R3 = 2,6/15 = 0,17A


4) Действительный ток I3


I3 = I3' + I3''

I3 = 0,956 + 0,17 = 1,13A


Ответ: I3 = 1,13А

 

Раздел 2


Для данной схемы состоящей из источников ЭДС и тока, активных, индуктивных и ёмкостных сопротивлений:

найти линейную частоту;

определить действующие значения токов во всех ветвях схемы и напряжения на всех комплексных сопротивлениях и каждом пассивном элементе;

определить полную, активную и реактивную мощности каждого источника электроэнергии и всех действующих в цепи источников;

составить баланс активных мощностей;

записать уравнения мгновенных значений ЭДС для источников ЭДС;

построить векторные диаграммы токов и напряжений



R1=10Ом; R2=40Ом; R4=25Ом; R5=15Ом;

L1=65мГн; L6=50мГн;

C1=65мкФ; C3=250мкФ; C4=125мкФ;

Еm2=24,5B ψ=80°; Еm6=24,5B ψ=-10°;

ω=400рад/с;

Jm5=5,5A ψ=0°


Решение:

Для определения линейной частоты f следует использовать связывающее её с угловой частотой ω соотношение


ω=2πf

f= ω/2π=400/2×3,14=63,69рад/с


Расчёт токов в ветвях следует вести в изложенной ниже последовательности

а) сопротивление реактивных элементов


XL= ω×L

XC=1/ ω×С

XL1= ω×L1=400×65×10-3=26Ом

XC1=1/ ω×С1=1/400×65×10-6=1/0,026=38,5Ом

XC3=1/ ω×С3=1/400×250×10-6=1/0,1=10Ом

XC4=1/ ω×С4=1/400×125×10-6=1/0,05=20Ом

XL6= ω×L6=400×50×10-3=20Ом


б) заданные числа в комплексной форме


Z1=R1+j (XL1 - XC1) =10+j (26-38,5) =10-j12,5=16e-j51°34'

À=a-jb=Aejφ

=arctg (-12,5/10) =-51°34'

A=

Z2=R2=40=40ej0°

Z3=-j XC3=-j10=10e-j90°

Z4= R4-j XC4=25-j20=32,015e-j36°66'

Z5= R5=15=15ej0°

Z6=j XL6=j20=20ej90°


в) преобразуем источник тока J5 в источник ЭДС E с внутренним сопротивлением Z5


E= J5Z5=5,5ej0°×15ej0°=82,5ej0°


Таблица 1-Результаты расчёта заданных величин и параметров схемы в алгебраической и показательной форме.

Величина

Алгебраическая форма

Показательная форма

Z1

10-j12,5

16e-j51°34'

Z2

40

40ej0°

Z3

-j10

10e-j90°

Z4

25-j20

32,015e-j36°66'

Z5

15

15ej0°

Z6

j20

20ej90°

E2

4,25+j24,127

24,5ej80°

E6

9,85-j1,736

10e-j10°

J5

5,5

5,5ej0°

E

82,5

82,5ej0°


г) контурные уравнения для заданной расчётной схемы имеют вид



д) по найденным определителям вычисляем контурные токи:



е) по контурным токам определяем токи в ветвях цепи:


==-0,5136+j2,0998=2,1617ej103°74'

==0,5470239-j0,134203=0,5632e-j13°78'

==-4,2601-j3,76139=5,683e-j138°55'

==0,0334239+j1,965597=1,96588ej89°02'

==4,80712+j3,627187=6,022ej37°03'

==-4,7737-j1,66159=5,0546e-j160°80'


Таблица 2 - Результаты расчётов токов и напряжений.

Искомая величина

Алгебраическая форма

Показательная форма

Действующее значение

Токи ветвей, А

-0,5136+j2,0998

2,1617ej103°74'

2,1617

0,5470239-j0,134203

0,5632e-j13°78'

0,5632

-4,2601-j3,76139

5,683e-j138°55'

5,683

0,0334239+j1,965597

1,96588ej89°02'

1,96588

4,80712+j3,627187

6,022ej37°03'

6,022

-4,7737-j1,66159

5,0546e-j160°80'

5,0546

Напряжения на сопротивлениях,

В

EZ1

21,1115+j27,418

34,604ej52°40'

34,604

UR1

-5,136+j20,998

21,61ej103°74'

21,61

UXL1

-54,59-j13,35

56, 204e-j166°25'

56, 204

UXc1

80,75+j19,75

83,13ej13°74'

83,13

EZ2

21,8809-j5,368

22,5298e-j13°78'

22,5298

UR2

21,8809-j5,368

22,529e-j13°78'

22,529

EZ3

-37,6139+j42,601

56,83ej131°44'

56,83

UXc3

-37,6139+j42,601

56,83ej131°44'

56,83

EZ4

40,1475+j48,4714

62,9389ej50°36'

62,9389

UR4

0,8355+j49,139

49,147ej89°02'

49,147

UXc4

39,31-j0,668

39,31e-j0°97'

39,31

EZ5

72,1068+j54,4078

90,3305ej37°03'

90,3305

UR5

72,106+j54,407

90,33ej37°03'

90,33

EZ6

33,2318-j95,474

101,092e-j70°80'

101,092

UXL6

33,23-j95,474

101,09e-j70°80'

101,09


ж) по найденным токам в ветвях и комплексным сопротивлениям находим комплексные ЭДС в ветвях цепи:


ĖZ1=×Z1= (-0,5136+j2,0998) × (10-j12,5) =21,1115+j27,418=34,604ej52°40'

ĖZ2=×Z2= (0,5470239-j0,134203) × (40+j0) =21,8809-j5,368=22,5298e-j13°78'

ĖZ3=×Z3= (-4,2601-j3,76139) × (-j10) =-37,6139+j42,601=56,83ej131°44'

ĖZ4=×Z4= (0,0334239+j1,965597) × (25-j20) =40,1475+j48,4714=62,9389ej50°36'

ĖZ5=×Z5= (4,80712+j3,627187) × (15+j0) =72,1068+j54,4078=90,3305ej37°03'

ĖZ6=×Z6= (-4,7737-j1,66159) × (j20) =33,2318-j95,474=101,092e-j70°80'


з) находим напряжения на каждом сопротивлении и их элементах по закону Ома U=J×R


UR1=×R1= (-0,5136+j2,0998) × (10+j0) =-5,136+j20,998=21,61ej103°74'

UXL1=×XL1= (-0,5136+j2,0998) × (j26) =-54,59-j13,35=56, 204e-j166°25'

UXc1=×XC1= (-0,5136+j2,0998) × (-j38,46) =80,75+j19,75=83,13ej13°74'

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать