Теоретические основы электротехники

UR2=×R2= (0,5470239-j0,134203) × (40+j0) =21,8809-j5,368=22,529e-j13°78'

UXc3=×XC3= (-4,2601-j3,76139) × (-j10) =-37,6139+j42,601=56,83ej131°44'

UR4= ×R4= (0,0334239+j1,965597) × (25+j0) =0,8355+j49,139=49,147ej89°02'

UXc4=×XC4= (0,0334239+j1,965597) × (-j20) =39,31-j0,668=39,31e-j0°97'

UR5=×R5= (4,80712+j3,627187) × (15+j0) =72,106+j54,407=90,33ej37°03'

UXL6=×XL6= (-4,7737-j1,66159) × (j20) =33,23-j95,474=101,09e-j70°80'


3) Находим комплекс мощности S источника питания, как произведение комплекса ЭДС источника на сопряжённый комплекс тока J даваемое этим источником


S1=EZ1×J1= (21,1115+j27,418) × (-0,5136-j2,0998) =46,729-j58,4118=74,80e-j51°34'

P1=S1×cosφ=74,80×cos (-51°34') =46,727Вт

Q1= S1×sinφ=74,80×sin (-51°34') =-58,408ВАр

S2=EZ2×J2= (21,8809-j5,368) × (0,5470239+j0,134203) =12,689+j0=12,689ej0°

P2=S2×cosφ=12,689×cos0=12,689Вт

Q2= S2×sinφ=0

S3=EZ3×J3= (-37,6139+j42,601) × (-4,2601+j3,76139) =-j322,965=322,965e-j90°

P3=S3×cosφ=322,965×cos (-90) =0

Q3= S3×sinφ=322,965×sin (-90) =-322,965ВАр

S4=EZ4×J4= (40,1475+j48,4714) × (0,0334239-j1,965597) =96,617-j77,293=123,73e-j38°66'

P4=S4×cosφ=123,73×cos (-38°66') =96,616Вт

Q4= S4×sinφ=123,73×sin (-38°66') =-77,293ВАр

S5=EZ5×J5= (72,1068+j54,4078) × (4,80712-j3,627187) =543,973-j0=543,973ej0°

P5=S5×cosφ=543,973, Q5= S5×sinφ=0

S6=EZ6×J6= (33,2318-j95,474) × (-4,7737+j1,66159) =0+j510,981ej90°

P6=S6×cosφ=0

Q6= S6×sinφ=510,981×sin90=510,981Вар


4) для составления баланса активных мощностей определяем активную мощность потребляемую активными сопротивлениями


PR=J12×R1+J22×R2+J42×R4+J52×R5=2,16172×10+0,56322×40+1,965882×25+ +6,0222×15=700Вт


отдаваемая мощность источниками ЭДС


P1+P2+P3+P4+P5+P6=46,727+12,689+0+96,616+543,973+0=700Вт


после подстановки числовых значений баланс мощностей выполняется, что свидетельствует о правильности вычисления токов в ветвях.

5) уравнения мгновенных значений заданных ЭДС имеют вид:


e=Emsin (ωt+ψ), где


ω-угловая частота, ψ-начальная фаза каждой ЭДС


e1=EZ1×sin (400t+ψ) =34,604×sin (400t+52°40')

e2=EZ2×sin (400t+ψ) =22,5289×sin (400t-13°78')

e3=EZ3×sin (400t+ψ) =56,83×sin (400t+131°44')

e4=EZ4×sin (400t+ψ) =62,9389×sin (400t+50°36')

e5=EZ5×sin (400t+ψ) =90,3305×sin (400t+37°03')

e6=EZ6×sin (400t+ψ) =101,092×sin (400t-70°80’)


6) Построение векторной диаграммы:

Таблица 3 - Длины векторов тока и напряжения, их действительных и мнимых частей

Величина

Масштаб, 1/см

Длина вектора, см

Длина действительной части, см

Длина мнимой части, см

Токи ветвей

mJ=0,5A/см

4,32

-1

4

1,12

1,09

-0,268

11,36

-8,52

-7,52

3,93

0,06

3,93

12,04

9,6

7,25

10,1

-9,54

-3,32

ЭДС и напряжения

EZ1

mu=15 B/см

2,3

1,4

1,82

UR1

1,44

-0,34

1,39

UXL1

3,74

-3,639

-0,89

UXc1

5,54

5,38

1,316

EZ2=UR2

1,5

1,45

-0,36

EZ3=UXc3

3,78

-2,5

2,84

EZ4

4, 19

2,67

3,23

UR4

3,27

0,05

3,27

UXc4

2,62

2,62

0,04

EZ5=UR5

6,02

4,8

3,62

EZ6=UXL6

6,74

2,21

-6,36



Раздел 3


Трёхфазный приёмник электрической энергии соединён звездой и включен в четырёхпроводную сеть трёхфазного тока с линейным напряжением UЛ=660В. Сопротивления фаз приёмника: активные-RА=20Ом, RВ=16Ом, RС=16Ом; индуктивные-XLв=12Ом; ёмкостные-XCC=12Ом; сопротивления нулевого провода: активное-R0=0,6Ом, индуктивное-X0=0,8Ом.

Определить:

1) Напряжение смещения нейтрали

а) при наличии нулевого провода;

б) при обрыве нулевого провода;

2) напряжение на каждой фазе приёмника

а) при наличии нулевого провода;

б) при обрыве нулевого провода;

3) при наличии нулевого провода

а) фазные, линейные токи и ток в нулевом проводе;

б) активную, реактивную и полную мощности каждой фазы и всей цепи;

в) коэффициент мощности каждой фазы и всей цепи.

Построить:

а) векторную диаграмму токов и напряжений для цепи с неповреждённым нулевым проводом;

б) векторную диаграмму токов и напряжений для цепи с оборванным нулевым проводом;

в) топографическую диаграмму напряжений при обрыве нулевого провода.



Решение: напряжение смещения нейтрали.

Напряжение смещения нейтрали U0 может быть найдено методом узловых потенциалов где ŮА, ŮB, ŮC,-фазные напряжения фаз А, В, и С; GA, GB, GC и G0 - проводимости фаз А, В, С и нулевого провода.

При соединении фаз звездой действующие значения фазных UФ. и линейных UЛ. напряжений связаны соотношением


UФ. = UЛ. /


Таким образом, ŮА=ŮB=ŮC=660/=380В.

Комплексы напряжений, сопротивлений и проводимостей в показательной и алгебраической формах:


ŮА=380ej0= (380+j0) В;

ŮB=380e-j120°= (-190-j328) В;

ŮC=380ej120°= (-190+j328) В;

ZA=20=20ej0°

GA=1/ ZA=1/20ej0°=0,05ej0°

ZB=16+j12=20ej37°

GB=1/ ZB=1/20ej37°=0,04-j0,03=0,05e-j37°

ZC=16-j12=20e-j37°

GC=1/ ZC=1/20e-j37°=0,04+j0,03=0,05ej37°

Z0=0,6+j0,8=1ej53°

G0=1/ Z0=1/1ej53°=0,6-j0,8=1e-j53°


Напряжение смещения нейтрали по:


Ů0= (ŮА×GA+ŮB×GB+ŮC×GC) / (GA+GB+GC+G0),


а) при наличии нулевого провода


Ů0= (380ej0×0,05ej0°+380e-j120°×0,05e-j37°+380ej120°×0,05ej37°) /

/0,05+ (0,04-j0,03) + (0,04+j0,03) + (0,6-j0,8) =-9,88-j10,83=14,66e-j132°38'


б) при обрыве нулевого провода


Ů'0= (380ej0×0,05ej0°+380e-j120°×0,05e-j37°+380ej120°×0,05ej37°) /

/0,05+ (0,04-j0,03) + (0,04+j0,03) =-122,15+j0=122,15ej180°


Определение фазных напряжений нагрузки

Напряжение на каждой фазе нагрузки Ůнагр. является разностью фазного напряжения источника питания Ů и напряжения смещения нейтрали Ů0


Ůнагр. = Ů - Ů0


Напряжение на фазах нагрузки

а) при наличии нулевого провода


ŮАнагр. =ŮА-Ů0=380- (-9,88-j10,83) =389,88+j10,83=390ej1°59'

ŮВнагр. =ŮВ-Ů0= (-190-j328) - (-9,88-j10,83) =-180,12-j317,17=364,74e-j120°

ŮCнагр. =ŮC-Ů0= (-190+j328) - (-9,88-j10,83) =-180,12+j338,83=383,73ej118°

б) при обрыве нулевого провода

Ů'Анагр. =ŮА-Ů'0=380- (-122,15+j0) =502,15+j0=502,15ej0°

Ů'Внагр. =ŮВ-Ů'0= (-190-j328) - (-122,15+j0) =-67,85-j328=334,94e-j102°

Ů'Cнагр. =ŮC-Ů'0= (-190+j328) - (-122,15+j0) =-67,85+j328=334,94ej102°


3) Определение фазных и линейных токов, тока в нулевом проводе

При соединении звездой фазные и линейные токи равны, т.е.


IФ. А=IЛ. А; IФ. В=IЛ. В; IФ. С=IЛ. С;


Если известны напряжения Ů и проводимости G-участков, токи через них можно определить по закону Ома


İ= Ů×G


а) Фазные и линейные токи при наличии нулевого провода


İф. А=İл. А=ŮАнагр. ×GA= (389,88+j10,83) ×0,05=19,494+j0,5415=19,50ej1°59'

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать