Термодинамика

при 20 С в системе происходят периодические изменения цвета с периодом около 4 минут . После нескольких таких колебаний спонтанно возникают неоднородности концентрации и образуются на некоторое время ( 30 минут ) , если не подводить новые вещества , устойчивые пространственные структуры , рисунок 2.10б . Если непрерывно подводить реагенты и отводить конечные продукты , то структура сохраняется неограниченно долго .


2.3.3. БИОЛОГИЧЕСКИЕ  СИСТЕМЫ .

   Животный мир демонстрирует множество высокоупорядоченных структур и великолепно функционирующих . Организм как целое непрерывно получает потоки энергии ( солнечная энергия , например , у растений ) и веществ ( питательных ) и выделяет в окружающую среду отходы жизнедеятельности . Живой организм - это система открытая . Живые системы при этом функционируют определенно в дали от равновесия . В биологических системах , процессы самоорганизации позволяют биологическим системам ²трансформировать² энергию с молекулярного уровня на макроскопический . Такие процессы , например , проявляются в мышечном сокращении , приводящим к всевозможным движениям , в образовании заряда у электрических рыб , в распознавании образов , речи и в других процессах в живых системах. Сложнейшие биологические системы являются одним из главных объектов исследования в синергетике . Возможность полного объяснения особенностей биологических систем , например , их эволюции с помощью понятий открытых термодинамических систем и синергетики в настоящее время окончательно неясна . Однако можно указать несколько примеров явной связи между понятийным и математическим аппаратом открытых систем и биологической упорядоченностью.

   Более конкретно биологические системы мы рассмотрим в 3 главе , посмотрим динамику популяций одного вида  и систему ²жертва - хищник² .

2.3.4.  СОЦИАЛЬНЫЕ  СИСТЕМЫ .

   Социальная система  представляет собой определенное целостное образование , где основными элементами являются люди , их нормы и связи . Как целое система образует новое качество , которое не сводится к сумме качеств ее элементов . В этом наблюдается некоторая аналогия с изменением свойств при переходе от малого к    очень большому числу частиц в статической физике - переход от динамических к статическим закономерностям . При этом весьма очевидно , что всякие аналогии с физико - химическими и биологическими системами весьма условны , поэтому проводить аналогию между человеком и молекулой или даже нечто подобное было бы не допустимым заблуждением . Однако , понятийный и математический аппарат нелинейной неравновесной термодинамики и синергетики оказываются полезными в описании и анализе элементов самоорганизации в человеческом обществе.

   Социальная самоорганизация - одно из проявлений спонтанных или вынужденных процессов в обществе , направленная на упорядочение жизни социальной системы , на большее саморегулирование. Социальная система является системой открытой способная , даже вынужденная обмениватся с внешним миром информацией , веществом , энергией. Социальная самоорганизация возникает как результат целеноправленных индивидуальных действий ее составляющих.

   Рассмотрим самоорганизацию в социальной системы напримере урбанизации зоны . Проводя анализ урбанизации географических зон можно предположить , что рост локальной заселенности данной территории будет обусловлен наличием в этой зоне рабочих мест . Однако , здесь существует некоторая зависимость : состояние рынка , определяющего потребность в товарах и услугах и занятости . Отсюда возникает механизм нелинейной обратной связи в процессе роста плотности населения. Такая задача решается на основе логистического уравнения , где зона характеризуется ростом ее производительности  N , новых экономических функций  S - функция в локальной области  i  города. Логистическое уравнение описывает эволюцию численности населения и может быть тогда представлена в виде

                      dni

¾    =   Кni(N + å Rk Sik - ni) - dni         ( 2.13 )

dt                         k


где  Rk   вес данной к - ой  функции , ее значимость . Экономическая функция изменяется с ростом численности : определяется спросом на к - й  продукт в  i - й  области в зависимости от увеличения численности населения и конкуренции предприятий в других зонах города . Появление новой экономической функции играет роль социально экономической флуктуации и нарушает равномерное распределение плотности населения. Такие численные расчеты по логистическим уравнениям могут быть полезны прогнозировании многих проблем.


ПОСТАНОВКА  ЗАДАЧИ.


   В рассмотренных примерах в литературе имеются лишь общие выводы и заключения , не приведены конкретные аналитические расчеты или численные .

   Целью настоящей дипломной работы является аналитические и численные исследования самоорганизации различных систем .







ГЛАВА 3

   АНАЛИТИЧЕСКИЕ  И ЧИСЛЕННЫЕ  ИССЛЕДОВАНИЯ 

   САМООРГАНИЗАЦИИ  РАЗЛИЧНЫХ  СИСТЕМ.

3.1.       ЯЧЕЙКИ  БЕНАРА .


   Для того , чтобы экспериментально изучить структуры , достаточно иметь сковороду , немного масла и какой ни будь мелкий порошок , чтобы было заметно движение жидкости . Нальем в сковороду масло с размешанным в нем порошком и будем подогревать ее снизу (рис. 3.1)

Рис. 3.1. Конвективные ячейки Бенара.

   Если дно сковороды плоское и нагреваем мы ее равномерно , то можно считать , что у дна и на поверхности поддерживаются постоянные температуры , снизу -  Т1 , сверху -  Т2 . Пока разность температуры  DТ = Т1 - Т2 невелика , частички порошка неподвижны , а следовательно , неподвижна и жидкость .

   Будем плавно увеличивать температуру Т1 . С ростом разности температур до значения  DТc  наблюдается все та же картина , но когда  DТ > DТc , вся среда разбивается на правильные шестигранные ячейки (см. Рис. 3.1) в центре каждой из которых жидкость движется вверх , по кроям вниз . Если взять другую сковороду , то можно убедиться , что величина возникающих ячеек практически не зависит от ее формы и размеров . Этот замечательный опыт впервые был проделан Бенаром в начале нашего века , а сами ячейки получили название ячеек Бенара .

   Элементарное качественное объяснения причины движения жидкости заключается в следующем . Из-за теплового расширения жидкость расслаивается , и в более нижнем слое плотность жидкости  r1  меньше , чем в верхнем  r2  . Возникает инверсный градиент плотности , направленный противоположно силе тяжести . Если выделить элементарный объем  V , который немного смещается вверх в следствии возмущения , то в соседнем слое архимедова сила станет больше силы тяжести , так как  r2  >  r1 . В верхней части малый объем , смещаясь вниз , поподает в облость пониженной плотности , и архимедова сила будет меньше силы тяжести  FA < FT  , возникает нисходящее движение жидкости . Направление движения нисходящего и восходящего потоков в данной ячейке случайно , движение же потоков в соседних ячейках , после выбора направлений в данной ячейке детерминировано . Полный поток энтропии через границы системы отрицателен , то есть система отдает энтропию , причем в стационарном состоянии отдает столько , сколько энтропии производится внутри системы (за счет потерь на трение).

                     dSe        q        q                  T1 - T2

¾   =   ¾  -   ¾    = q *    ¾¾¾    < 0      (3.1)

dt          T2        T1               T1 * T2

   Образование именно сотовой ячеистой структуры объясняется минимальными затратами энергии в системе на создание именно такой формы пространственной структуры . При этом в центральной части ячейки жидкость движется вверх , а на ее периферии - вниз.

   Дальнейшее сверхкритическое нагревание жидкости приводит к разрушению пространственной структуры - возникает хаотический турбулентный режим.

       Рис. 3.2.   Иллюстрация возникновения тепловой

                         конвекции в жидкости .

   К этому вопросу прикладывается наглядная иллюстрация возникновения тепловой конвекции в жидкости .

3.2 ЛАЗЕР , КАК САМООРГАНИЗУЮЩАЯСЯ СИСТЕМА.

   Во второй главе этот вопрос мы уже рассматривали . Здесь же , рассмотрим простую модель лазера .

   Лазер - это устройство , в котором в процессе стимулированного излучения порождаются фотоны .

   Изменение со временем числа фотонов  n  , или другими словами , скорость порождения фотонов , определяется уравнением вида :


                   dn / dt  =  «Прирост» - «Потери»          (3.2)


   Прирост обусловлен так называемым стимулированном излучением . Он пропорционален числу уже имеющихся фотонов и числу возбужденных атомов  N . Таким образом :


Прирост  =  G N n             (3.3)


    Здесь  G  -  коэффициент усиления , который может быть получен из микроскопической теории . Член , описывающий потери , обусловлен уходом фотонов через торцы лазера . Единственное допущение , которое мы принимаем , - это то , что скорость ухода пропорциональна числу имеющихся фотонов . Следовательно ,


Потери  =  2cn          (3.4)

 

2c  =  1/ t0 , где  t0 - время жизни фотона в лазере .

   Теперь следует учесть одно важное обстоятельство , которое делает (2.1) нелинейным уравнением вида :

             (3.5)

   Число возбужденных атомов уменьшается за счет испускания фотонов . Это уменьшение  DN  пропорционально числу имеющихся в лазере фотонов , поскольку эти фотоны постоянно заставляют атомы возвращаться в основное состояние .

DN = an              (3.6)

   Таким образом , число возбужденных атомов равно

N = N0 - DN                (3.7)

где  N0 - число возбужденных атомов , поддерживаемое внешней

              накачкой , в отсутствии лазерной генерации.

   Подставляя (3.3) - (3.7) в (3.2) , получаем основное уравнение нашей упрощенной лазерной модели :

            (3.8)

где постоянная   k   дает выражение :

k1  =  aG         

k  =  2c - GN0  ><  0     (3.9)

   Если число возбужденных атомов  N0  (создаваемых накачкой) невелико , то  k  положительно , в то время как при достаточно больших  N0  k - может стать отрицательным . Изменение знака происходит когда

Страницы: 1, 2, 3, 4, 5, 6, 7



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать