Виды теплообмена

Выражение (1.8) записывается в безразмерной форме следующим образом:


. (1.9)

Следовательно, температура изменяется в радиальном направлении по логарифмическому закону.

Поскольку распределение температуры известно, тепловой поток вдоль радиуса цилиндра можно найти с помощью закона Фурье для цилиндрической системы координат,


 (1.10)


где - длина цилиндра.

Дифференцируя распределение температуры (1.8) и подставляя полученный результат в соотношение (1.10), получаем


 (1.11)


Выражение (1.11) записано в форме закона Ома, и знаменатель представляет собой термическое сопротивление полого цилиндра:


 (1.12)


Используем интегральную форму представленного термического сопротивления. Получаем


Принципы последовательного и параллельного соединения термических сопротивлений в цепь, справедливые для плоской стенки в прямоугольной системе координат, можно применить и для задачи о теплопроводности в полом цилиндре. Предположим, например, что жидкость течет в трубе, покрытой теплоизоляционным материалом (рисунок 1.4). Известно, что средняя температура жидкости равна T1, а температура внешней поверхности изоляции Т2. Характеристики материала трубы обозначены индексом 1, а изоляции-индексом 2. Конвективное термическое сопротивление жидкости определяется формулой (1.01). Конвективное термическое сопротивление жидкости нужно соединить последовательно с двумя кондуктивными термическими сопротивлениями для двух твердых материалов, поскольку тепловой поток распространяется последовательно через каждый из этих материалов.

Тепловой поток в этой задаче выражается соотношением:


 (1.13)


Термическое сопротивление, входящее в соотношение (1.13), является суммой всех термических сопротивлений между двумя известными температурами. Если известны температуры Т1и Т2, то полное сопротивление должно равняться сумме только кондуктивных сопротивлений трубы и изоляции. Температура Тx при известном тепловом потоке находится из соотношения


 (1.14)

1.4 Сферические координаты


Распределение температуры и тепловой поток для полого шара определяются таким же образом, как для полого цилиндра и плоской стенки. Стационарное одномерное распределение температуры при отсутствии внутреннего тепловыделения определяется из решения упрощенного уравнения теплопроводности, записанного в сферических координатах. Это уравнение имеет вид



Предполагаем, что граничными условиями являются заданные температуры внутренней и наружной поверхности шара (рисунок 1.5.): Т(ri)=Ti; Т(r0)=Т0. В таком случае распределение температуры в полом шаре определяется соотношением


 (1.15)


Следовательно, температура полого шара изменяется в радиальном направлении по гиперболическому закону.

Тепловой поток через стенку шара можно найти, применяя закон Фурье к соотношению (1.15). В итоге получаем


 (1.16)

Таким образом, термическое сопротивление стенки шара выражается формулой


 (1.17)


Для интегрального представления  имеем


Использование интегрального представления  более универсально, не требует математического описания, интегрирования дифференциального уравнения, определения констант и т. д.


1.5 Суммарный коэффициент теплопередачи


Если в задаче теплообмена участвует несколько термических сопротивлений, соединенных последовательно, параллельно или комбинированно, удобно ввести суммарный коэффициент теплопередачи, или суммарную удельную тепловую проводимость. Суммарный коэффициент теплопередачи обозначается через К и определяется формулой


 (1.18)

Величина K играет ту же роль, что и коэффициент конвективной теплоотдачи a. И К, и a имеют размерность Вт/(м2.град). Если соотношение (1.18) сравнить с равенством


, (1.19)


то видно, что К можно выразить через полное термическое сопротивление цепи:


 (1.20)


В качестве примера использования суммарного коэффициента теплопередачи рассмотрим трехслойную, плоскую стенку, показанную на рисунке 1.2. Величина К в этой задаче находится по формуле



В этом примере площади поперечного сечения всех трех материалов одинаковы, поэтому нет сомнений, какую площадь нужно использовать в соотношении (1.20). Однако, если площади для каждого термического сопротивления различны, нужно быть последовательными при выборе площади, входящей в соотношение (1.20). Случаю переменной площади соответствует задача о многослойной цилиндрической стенке с последовательным соединением термических сопротивлений. Величину KS для тепловой цепи (рисунок 1.4) можно определить из формулы

 или


Отметим, что произведение KS постоянно, но величина K зависит от выбора соответствующей площади. Предположим, например, что за характерную площадь мы приняли площадь внутренней поверхности трубы Si =2p r1L. В таком случае величина K, рассчитанная по Si, равна



Если величина K рассчитана по площади наружной поверхности трубы S0 = 2p r3L, то



Несмотря на то, что значения Ki и Ko различны, произведение KS всегда постоянно: KiSi = KoSo.

2.   ВЫНУЖДЕННЫЙ КОНВЕКТИВНЫЙ ТЕПЛООБМЕН


Уметь рассчитывать конвективный тепловой поток нужно не только при течениях в каналах, но и при обтекании пластин, цилиндров, сфер и пучков труб, что важно для инженерных приложений.


2.1 Плоская пластина


Теплообмен при обтекании плоской пластины показывает, что для данной жидкости среднее число Нуссельта прежде всего зависит от числа Рейнольдса, вычисленного по скорости невозмущенного течения и длине пластины в направлении потока. В некоторых случаях бывает необходимо знать местный коэффициент теплоотдачи, и тогда характерным размером, используемым в числах Нуссельта и Рейнольдса, будет расстояние от передней кромки. В инженерных расчетах локальное число Нуссельта при ламинарном обтекании плоской пластины (Rex < 5-105) определяют по формуле


, (2.1)


тогда как среднее число Нуссельта определяют по формуле


,. (2.2)


Средний коэффициент теплоотдачи в формуле (2.1) получают интегрированием


 (2.3)


При турбулентном обтекании (RеL.>5.105) на части пластины, непосредственно следующей за передней кромкой, течение ламинарное, и лишь далее оно становится турбулентным. Локальное значение числа Нуссельта при любом х за местом смены режима течения, т. е. при х > xс, определяется по формуле


, (2.4)


в то время как среднее его значение, если переход происходит при Rex=5-105, равно


,. (2.5)


2.2 Одиночный цилиндр и сфера


Принципиальное отличие обтекания цилиндра или сферы от обтекания плоской пластины состоит в том, что при этом может происходить не только переход от ламинарного течения к турбулентному в пограничном слое, но и отрыв самого пограничного слоя от поверхности раздела жидкости и тела в кормовой его части. Причиной отрыва является возрастание давления в направлении течения, что и приводит к образованию области отрывного течения за телом в случае, когда скорость невозмущенного потока достаточно велика.

Рисунок 2.1 Схема развития отрывного течения.


Образование такой области при обтекании цилиндра схематически показано на рисунке 2.1, а ее снимок приведен на рисунке 2.2. Вполне очевидно, что в области, где пограничный слой оторван от поверхности, будут совершенно другие значения числа Нуссельта, чем в области, где он примыкает к поверхности.


Рисунок 2.2.- Область отрыва за одиночным цилиндром.


Это подтверждают данные, полученные при числах Рейнольдса в невозмущенном потоке 70000<Re<220000 (рисунок 2.3). На рисунке 2.3 приведены значения локального числа Nuq = aс.qD/l в зависимости от углового расстояния q от критической точки. Можно видеть, что сначала, как и при ламинарном обтекании пластины, локальное число Нуссельта понижается по мере удаления от передней образующей цилиндра, но затем оно резко возрастает при переходе течения от ламинарного к турбулентному и снова понижается в области турбулентного пограничного слоя. Однако в задней части цилиндра в области отрывного течения число Нуссельта вновь возрастает. При двух самых низких значениях числа Рейнольдса (70000 и 100000) отрыв происходит до начала перехода от ламинарного режима течения в пограничном слое к турбулентному. При этом минимальное значение коэффициента теплоотдачи достигается примерно в точке отрыва.

В обычной инженерной практике не обязательно рассчитывать локальные значения числа Нуссельта, а достаточно знать среднее значение коэффициента теплоотдачи. Среднее число Нуссельта acD/l можно представить в зависимости от числа Рейнольдса rw8D/m невозмущенного потока и числа Прандтля Cpm/l,причем эта эмпирическая зависимость аналогична ранее полученной для течения в каналах, с той лишь разницей, что характерным размером в числах Рейнольдса и Нуссельта для цилиндра и сферы является наружный диаметр тела D. Для газов и обычных жидкостей средний коэффициент теплоотдачи при обтекании одиночного цилиндра можно рассчитать по формуле


, (2.6)


где w¥-скорость набегающего потока, а значения коэффициента С и показателя степени n для различных интервалов значении ReD приведены в таблице 2.1.

Угловое расстояние от критической точки q

Рисунок 2.3. -Число Нуссельта в зависимости от угловой координаты при поперечном обтекании цилиндра.

Таблица 2.1 - Значения констант в формуле (2.6)

ReD,f

C

n

0.4-4

0.989

0.330

4-40

0.911

0.385

40-4000

0.683

0.466

4000-40000

0.193

0.618

40000-400000

0.0266

0.805

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать