Виды теплообмена

Для определения коэффициентов теплоотдачи при обтекании пучков труб жидкими металлами рекомендована формула

=4,03+0,228(RемаксРг)0,67, (2.9)

справедливая в интервале значений 20000<Reмакс<80000.

Падение давления (Н/м2) в потоке газа через пучок труб можно рассчитать по соотношению


 (2.10)


где Gмакc-массовая скорость при минимальной площади проходного сечения, кг/(с.м2);

r-плотность при условиях в невозмущенном потоке, кг/м3;

N-число поперечных рядов.

Эмпирический коэффициент трения f’ определяется по рекомендованным формулам


 (2.11)


при шахматном расположении труб и

 (2.12)


при коридорном расположения труб.

Для расчета коэффициента теплоотдачи при турбулентном обтекании пучка труб при наличии 10 и более рядов труб как при коридорном, так и шахматном их расположении и Reмакс>6000 рекомендуется формула

, (2.13)


которая, с достаточной точностью описывает экспериментальные данные.


2.3 Расчёт теплофизических характеристик cмеси газов


В теплотехнике обычно приходится встречаться не с отдельными газами, а со смесями газов. Такие смеси часто получаются как продукт процесса горения, представляющий собой химический процесс соединения горючих элементов топлива (С, Н, S) с кислородом воздуха. Продукты полного сгорания топлива состоят из СО2, SO2, Н2О, О2,N2. При неполном сгорании в состав продуктов сгорания входят такие газы, как СО, СН4, Н2,С2Н2 и т. д. Смесь продуктов неполного сгорания топлива представляет собой газовую смесь, способную к дальнейшему сгоранию, и поэтому её применяют как горючий газ в печах, топках или камерах сгорания различных тепловых установок.

При рассмотрении газовых смесей исходят из того, что смесь идеальных газов, не вступающих в химическое взаимодействие друг с другом, также является идеальным газом и подчиняется всем законам, относящимся к идеальным газам. При этом каждый газ, входящий в состав газовой смеси, ведёт себя так, как будто он один при данной температуре занимает весь объём смеси. Давление, которое при этом оказывает каждый компонент смеси на стенки сосуда, называется парциальным давлением, а давление газовой смеси складывается из парциальных давлений газов, образующих газовую смесь. Это положение составляет содержание закона Дальтона для газовых смесей, который Дальтон установил опытным путём в 1807 г.

Математически этот закон записывается следующим образом:


, (2.14)


где    рсм - давление смеси газов;

рi - парциальное давление i - го компонента, входящего в состав смеси;

n - число компонентов, образующих смесь.

Цель расчёта газовой смеси состоит обычно в определении молекулярной массы, газовой постоянной плотности удельного объёма и парциальных давлений компонентов, образующих смесь. Состав газовой смеси может быть задан двояко: массовыми или объёмными долями.

В первом случае, если обозначить массу смеси Gсм, а массу какого-то i - го компонента Gi, то отношение Gi к Gсм и определит массовую долю этого i - го компонента, обозначаемую через gi, т. е.

, и

.


Во втором случае объём смеси и объём каждого компонента, входящего в смесь, одинаковы и по отдельности равны по объёму того сосуда, в котором помещена смесь газов. При этом температура смеси и температура каждого компонента также одинаковы, а давление разные, ибо каждый из компонентов находится под своим парциальным давлением, а вся смесь под давлением, равным сумме этих парциальных давлений. Для того, чтобы сравнить количество газов, входящих в смесь, по объёму, нужно объёмы компонентов привести к одинаковому давлению, в качестве которого выбирают обычно давление смеси. Объёмы компонентов, приведенные к давлению смеси, называются парциальными объёмами. Если объём смеси обозначить Vсм, а парциальный объём i - го компонента - Vi, то объёмную долю i - го компонента можно найти как отношение его парциального объёма к объёму смеси, т. е.  ( где ri - объёмная доля i - го компонента). Чтобы найти


,


нужно определить, чему равна сумма парциальных объёмов . Поскольку температура смеси и всех компонентов одинакова, напишем уравнение Бойля - Мариотта для i - го компонента при двух состояниях: когда он занимает объём смеси и находится под парциальным давлением и когда он занимает парциальный объём и находится под давлением смеси, т. е.


. (2.15)


Если уравнения (1 - 14) написать для каждого компонента, входящего в состав газовой смеси, и просуммировать эти уравнения, будем иметь


.


Помня, что по уравнению (1 - 13) , получим


. Следовательно,

.


Для упрощения расчётов, связанных с газовыми смесями, условно заменяют смесь собранием однородных средних молекул, которые по своему числу и суммарной массе могли бы заменить действительную газовую смесь. Это упрощение даёт возможность подойти к рассмотрению газовой смеси как к однородному газу.

Введём понятие киломоля газовой смеси mсм и определим его значение через массовые и объёмные доли компонентов. Обозначим kсм - число киломолей газовой смеси; ki - число киломолей i - го компонента, входящего в состав смеси. Число молей смеси kсм определим как сумму чисел киломолей компонентов смеси, т. е.


, тогда

 или

 (2.16)


Для вычисления mсм через объёмные доли поступим так: пусть для простоты Vсм = 1 м3, тогда


; Gсм = rсмVсм = rсм; но

, а Gi = riVi = riri, следовательно,

 (2.17)


Эта формула, полученная как промежуточная в наших рассуждениях может служить для определения плотности смеси через объёмные доли. Так как


,


а по закону Авогадро (mu)i = (mu)см = idem, то

 и окончательно

 (2.18)


Газовая постоянная смеси газов Rсм определяется из соотношения


 (2.19) или

 откуда

 (2.20)


Плотность через массовые доли может быть определена по равенству


 и

 (2.21)


Удельный объём смеси uсм определяется как величина, обратная rсм.

Парциальные давления компонентов рi через объёмные доли легко определить из уравнения (1 - 14):


рiVсм = рсмVi; . Таким образом

рi= ri рсм (2.22)


Через массовые доли рi выражается следующим образом. Напишем уравнение состояния газа для смеси и для i - го компонента:



Разделив второе равенство на первое, получим


, откуда

 (2.23)


При расчёте газовых смесей часто встречается необходимость определить состав смеси по объёмным долям по известному массовому составу и наоборот. Установим соответствующие формулы перехода:


, но

 тогда

; (2.24)

 или

 (2.25)


Состав атмосферы в рабочем пространстве топок (продуктов сгорания) определяется, как правило, через объёмные доли. В этом случае теплофизические характеристики смеси газов рассчитываются аналогично расчёту rсм - формула 2.17


;

;

 и т. д.


2.4 Теплообмен при фазовых превращениях


Теплообмен с фазовыми превращениями - кипение

Фазовый переход

Ps - давление насыщенного пара

ts - температура насыщения

P=Cte -парообразование при постоянных р и Т

Lv - скрытая теплота парообразования образование пузырьков

d - поверхностное натяжение, r - радиус кривизны

 Dр»DТ (перегрев)


если г ® 0, Dр ® ¥ (пузырьки зарождаются всегда на поверхности)

поверхность нагрева и ее свойства играют важнейшую роль в парообразовании (пузырьки формируются преимущественно на шероховатой поверхности, которая образует микропузырьки ® "активные центры парообразования" или "зародыши")

форма и размеры пузырьков варьируются в зависимости от смачивания

кипение в непроточной воде или "в сосуде" (объемное):

Изменение температуры происходит в пограничном слое на стенке. Механизм и различные режимы кипения зависят главным образом от этой разницы температур.

Режимы кипения:

Вода с давлением 0,1 Мра



зона 1: свободная конвекция (еще нет возникновения пузырьков, т.к. ТН>Тw).

зона 2: пузырьковое кипение          ( пузырьки поднимаются вверх и вызывают есте- ственную циркуляцию)

зона 3: переходное кипение

зона нестабильности (только при данной ТН)

зона 4: пленочное кипение, продолжается образование пара пленки (изоляция), которое сопровождается передачей тепла

Критическая точка кипения с: нагрев при известном потоке затруднен из-за пленки пара, поэтому температура Тw резко возрастает (® плавление)

Теплообмен: ® в общем случае расчётные формулы очень громоздки (большое количество параметров)

аппроксимация по Фритцу:

для воды (р = 0,01 … 15Мра) в


 


зоне пузырькового кипения


 


Теплообмен при фазовых превращениях - конденсация

Вид конденсации: ® зависит существенно от взаимодействия “жидкость - стенка”

Плёночная конденсация (жидкость смачивает поверхность): a=8000..12000 Вт/(м2К) значения для водяного пара

Капельная конденсация (жидкость не смачивает поверхность): a=30000..40000 Вт/(м2К)

Плёночная конденсация на вертикальной стенке:


®


Теория Нуссельта (опубликована в 1916)

Фундаментальная гипотеза:

стационарный режим

насыщенный пар (с температурой ТН) в состоянии покоя

ТW - постоянна

стекание плёнки конденсата вниз в ламинарном режиме (под действием силы тяжести)

теплообмен осуществляется теплопередачей сквозь достаточно тонкую плёнку, поэтому градиент температуры через плёнку остаётся постоянным.


 

 


скрытая теплота парообразования бесконечно мала, если Рнас << Ркрит

L - высота охлаждаемой поверхности (для горизонтальной трубы используют L = 2,5d

rL - плотность жидкости

l - коэффициент теплопроводности

n - кинематическая вязкость



 - средняя скорость в плёнке

 - гидравлический диаметр = 4b (b: толщина плёнки)

 - смачиваемый периметр

 - массовый расход конденсата на единицу длины для водяного пара и ТН:


3.   ТЕПЛООБМЕН ИЗЛУЧЕНИЕМ И СЛОЖНЫЙ ТЕПЛООБМЕН

3.1 Радиационные свойства газов


Излучение газов существенно отличается от излучения, испущенного твердых тел. В то время как монохроматическая плотность потока излучения для твердого вещества практически изменяется во всем спектре, испускание и поглощение излучения в газах происходят в узких полосах длин волн.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать