|
Для оценки колеблемости показателей необходимы их статистические характеристики
(Табл. 1.4.).
Данные таблицы показывают, что незначительным колебаниям подвержены факторы Х3 и Х1; средняя колеблемость присуща функции Y, значительная – фактору Х2. Однако коэффициенты вариации показателей не превышают 33%, что свидетельствует об однородности исходной информации.
Шифр показа-теля
Среднее
Арифмети-ческое
Дисперсия
Стандартное отклонение
Асимме-трия
Эксцесс
Вариа-
ции
У1
Х1
Х2
Х3
1,641
33,178
36,164
92,061
0,06456
3,614
2,626
17,095
0,25409
1,9187
9,0899
4,1347
-0,43878
0,48522
-0,96513
0,53833
-0,72032
0,63515
0,96761
-1,2665
15,484
5,7831
25,135
4,4912
|
Коэффициенты асимметрии говорят о правосторонней асимметрии распределения рядов Х1 и Х3 и о левостороннем распределении рядов Х2 и У.
Величина эксцесса для всех показателей не превышает 3, что подтверждает низковершинное распределение вариационных рядов. Указанные коэффициенты интерпретируются геометрически.
Далее анализируется матрица коэффициентов парной корреляции (табл. 1.5.).
Шифр показателя |
У |
Х1 |
Х2 |
Х3 |
У Х1 Х2 Х3 |
1,0000 0,93778 0,0933618 0,92272 |
1,0000 0,093838 0,92602 |
1,0000 0,0786 |
1,0000 |
|
В данном примере наиболее тесная связь наблюдается между показателями фондоотдачи (У), идеального веса активной части фондов (Х1) и уровня загрузки производственной мощности (Х3). Парные коэффициенты корреляции соответственно составили 0,937778 и 0,92272.
Расчет парных коэффициентов корреляции выявил слабую связь фондоотдачи с электровооруженностью труда Х2 – 0,09361.
Гипотеза о наличии мультиколлинеарности отвергается, т. е. все показатели относительно независимы.
Для рассматриваемого примера вектор коэффициентов множественной детерминации равен: У = 0,9002; Х1 = 0,9043; Х2 = 0,0100; Х3 = 0,8820. Вектор интерпретируется следующим образом: изменение (вариация) функции (У) на 90,02% зависит от изменения избранных факторов-аргументов; фактора Х1 – на 90,43% от изменения функции (У) и остальных факторов и т. д.
В таблице 1.6. приведены частные коэффициенты корреляции. Они показывают связь каждой пары факторов в чистом виде при неизменном значении остальных параметров.
Шифр показателя |
У |
Х1 |
Х2 |
Х3 |
У Х1 Х2 Х3 |
1,0000 0,5713 0,02791 0,4148 |
1,0000 0,02994 0,4541 |
1,0000 0,03164 |
1,0000 |
|
Частные коэффициенты корреляции ниже парных. Это говорит о том, что чистое влияние факторов слабее, чем влияние оказываемое отдельными факторами во взаимодействии с остальными.
Статистическая значимость, надежность связи, выраженная частными коэффициентами корреляции, проверяется по t-критерию Стьюдента путем сравнения расчетного значения с табличными при заданной степени точности (Табл. 1.7.).
Шифр показателя |
У |
Х1 |
Х2 |
Х3 |
А |
1 |
2 |
3 |
4 |
У Х1 Х2 Х3 |
1,0000 4,1769 0,1675 2,7359 |
1,0000 0,1797 3,0583 |
1,0000 0,1899 |
1,0000 |
Обычно в практике экономических расчетов степень точности берется равной 5%, что соответствует вероятности р = 0,05. В таблице приведены критические значения t-критерия Стьюдента для вероятности р = 0,05 и 0,01 при различном числе степеней свободы, которые определяются как (n–1), где n – число наблюдений.
В нашем примере при числе степеней свободы 40 – 1 = 39 табличное значение tтабл. = 2,021. Расчетные значения t-критерия (первая графа таблицы) для факторов Х1 и Х3 оказались выше табличных, что свидетельствует о значимости этих факторов для анализируемой функции. Фактор Х2 как незначимый для функции должен быть исключен из дальнейших расчетов.
Далее на ЭВМ проводится шаговый анализ с постепенным включением в модель избранных факторов по критерию значимости. На каждом шаге рассматриваются уравнения регрессии, коэффициенты корреляции и детерминации, F-критерий, стандартная ошибка оценки и другие показатели. После каждого шага перечисленные оценочные показатели сравниваются с рассчитанными на предыдущем шаге. Уравнение регрессии будет тем точнее, чем ниже величина стандартной ошибки (табл. 1.8.).
№ шага |
Ввод переменной |
Уравнение регрессии |
Множественные коэффициенты |
Отношение |
Стандартная ошибка оценки |
|
Корреляции |
Детерми- нации |
|||||
I |
X1 |
У = -2,481 +0,1242 Х1 |
0.9378 |
0.8797 |
277.2 |
0.0893 |
II |
X3 |
У = -3,085+0,077 Х1 + + 0,0234 Х3+0,0002 Х2 |
0.9488 |
0.9001 |
166.7 |
0.0824 |
III |
X2 |
У = -3,091+0,0773 Х1+ + 0,0234 Х3+0,0002 Х2 |
0.9488 |
0.9002 |
108.3 |
0.0835 |