ЭММ и М

۷ 2  = 130 – (10 + 50 + 25 ) = 45,

۷ 3 = 130 – ( 15 + 20 + 30 ) = 65.

Учитывая, что 30% валовой добавленной стоимости приходится на зарплату, рассчитываем уровень зарплаты отраслей (zi):

z1 = 30% * ۷ 1  = 0,3 * 65 = 19,5,

z2 = 0,3 * 45 = 13,5,

z3 = 0,3 * 65 = 19,5;

и как балансирующий элемент – прочие элементы добавленной стоимости (di):

d1 = ۷ 1  - z1 = 65-19,5 = 45,5,

d2 = 45 – 13,5 = 31,5,

d3 = 65 – 19,5 = 45,5.

1.2. Матрица коэффициентов прямых затрат ( аij ) n*n рассчитывается на основе отчетного МОБ по формуле:

                           ___       ___

аijотч = Хijотч , i = 1,n , j = 1,n                                                                   (3)

                   хjотч

Для нашей задачи в соответствии с соотношением (3), получаем:


а11отч = Х11отч  = 30_ = 0,2069,

                   х1отч      145

а12отч = Х12отч  = 10_ = 0,0769,

                   х2отч       130

и т.д.

Вычисления оформляются в виде матрицы прямых затрат

1.3. Для решения задачи используем балансовое уравнение модели МОБ, связывающее показатели I и II квадратов МОБ – прогнозные значения валового выпуска отраслей хiпр и конечного использования уiпр:

                        n                                               ____

              хiпр = Σаijпрхjпр + уiпр,  i = 1,n.                                                             (4)

                         j=1

 Предложение неизменности динамики технологических процессов означает, что технологическая матрица прогнозного периода определяется технологической матрицей отчетного периода, т.е.

                                        ___        __

аijпр = аijотч,                 i = 1,3,  j = 1,3

 Тогда соотношения (4) для нашего примера перепишутся следующим образом:

  Данная система одновременных уравнений представляет собой модель для решения задачи 1.3.


1.4. Поскольку увеличение цены на продукцию второй отрасли в 2 раза является инфлятогенным фактором в экономике, произойдет повышение цен на продукцию первой и третьей отраслей. Обозначим индекс роста цен на продукцию первой отрасли р1, третьей отрасли – р3. Построение модели осуществляется с целью нахождения индексов р1 и р3 при условии, что р2 = 2 и соответствующих ограничений на рост заработной платы. Очевидно, что инфляционные процессы вызовут изменение номинальных потоков МОБ. Исходя из экономического смысла показателей отчетного МОБ, в новых ценах I и III квадранты МОБ перепишутся как представлено в таблице 3.

Таблица 2.

Показатели I и III квадрантов МОБ

в новых ценах (млн.руб.)

отрасли-производители

отрасли-потребители

 

 

1

2

3

1

30*р1

10*р1

15*р1

2

35*2

50*2

20*2

3

15*р3

25*р3

30*р3

зарплата

19,5*р1*0,7

13,5*2*0,7

19,5*р3*0,7

прочие элементы добавленной стоимости

45,5*р1

31,5*2

45,5*р3

валовый выпуск

145*р1

130*2

130*р3


Поскольку индекс цен на продукцию второй отрасли равен 2 и величина затрат на продукцию второй отрасли не влияет на формирование цены в этой отрасли, то баланс описывается для первой и третьей отрасли. Модель строится с использованием балансовых соотношений (2) в новых ценах:




Данная система одновременных уравнений представляет собой балансовую модель для решения задачи (1.4). Поскольку в дальнейшем система будет решатся на ПЭВМ и использованием стандартного ППП, необходимо провести подобные и записать модель в стандартном виде:



1.5. Задача решается аналогично решению задачи 1.4. Отличительной особенностью данной задачи является то, что инфлятогенным фактором выступает рост заработной платы на 50% в третьей отрасли, хотя в остальных отраслях зарплата остается неизменной. Данный фактор вызовет рост цен на продукцию отраслей соответственно в р1, р2, р3 раз. В новых ценах показатели I и  III квадрантов МОБ представлены в табл. 4.

Таблица 3.

Показатели I и III квадрантов МОБ

в новых ценах (млн.руб.)

отрасли-производители

отрасли-потребители

 

 

1

2

3

1

30*р1

10*р1

15*р1

2

35*р2

50*р2

20*р2

3

15*р3

25*р3

30*р3

зарплата

19,5*1

13,5*1

19,5*1,5

прочие элементы добавленной стоимости

45,5*р1

31,5*р2

45,5*р3

валовый выпуск

145*р1

130*р2

130*р3


    С учетом указанных условий соотношения МОБ (2) запишутся:

Система уравнений представляет собой балансовую модель для решения задачи (1.5). После при
ведения подобных модель имеет вид:





3. Задача №2.

2.1. Для определения вида зависимости построим диаграмму рассеяния по имеющимся данным.


Рис.1. Диаграмма рассеяния и регрессионная прямая, отражающая зависимость инвестиций от объема производства


      Расположение точек на диаграмме рассеяния позволяет предположить линейную связь между прибылью предприятия и ставкой налога. Поэтому имеет смысл искать зависимость в виде линейной функции: ŷ = b0 + b1х. Очевидно также, что данная зависимость прямая: с увеличением ставки налога прибыль уменьшается.

     2.2. В нашем примере при использовании МНК минимизируется следующая функция , т.е. сумма квадратов отклонений эмпирических значений уi от расчетных значений ŷi должно быть минимальным. Согласно МНК для нашего примера воспользуемся следующими формулами расчета:

   Для нахождения оценок параметров b0 и b1 в ручном режиме составим рабочую таблицу, которая содержит исходные данные и промежуточные результаты.

Таблица 4.

Рабочая таблица вычисления оценок параметров уравнения регрессии при изучении зависимости инвестиций от объема производства

I

x

y

x*2

x*y

y2

Yср

e

e2

e/y*100

(x-x ср)2

(у-уср)2

(е-е1)

(е-е)2

1

10

110

100

1100

12100

105,92

4,08

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать