16,65
3,71
400
2177,78
-
-
2
20
75
400
1500
5625
84,62
-9,62
92,54
12,83
100
136,11
-13,7
187,69
3
15
100
225
1500
10000
95,27
4,73
22,37
4,73
225
1344,69
14,35
205,92
4
25
80
625
2000
6400
73,97
6,03
36,36
7,54
25
277,89
1,3
1,69
5
30
60
900
1800
3600
63,32
-3,32
11,02
5,53
0
11,089
-9,35
87,42
6
35
55
1225
1925
3025
52,67
2,33
5,43
4,24
25
69,39
5,65
31,92
7
40
40
1600
1600
1600
42,02
-2,02
4,08
5,05
100
544,29
-4,35
18,92
8
35
80
1225
2800
6400
52,67
27,33
746,93
34,16
25
277,89
29,35
861,42
9
25
60
625
1500
3600
73,97
-13,97
195,16
23,28
25
11,09
-41,3
1705,69
10
40
30
1600
1200
900
42,02
-12,02
144,48
40,07
100
1110,89
1,95
3,80
11
45
40
2025
1800
1600
31,37
8,63
74,48
21,58
225
544,29
20,65
426,42
12
40
30
1600
1200
900
42,02
-12,02
144,48
40,07
100
1110,89
-20,65
426,42
Сумма
360
760
12150
19925
55750
759,84
1493,98
202,78
1350
7616,29
-16,1
259,21
среднее
30,00
63,33
1012,50
1660,42
4645,83
63,32
0,00
124,50
16,90
112,50
634,69
-1,34
21,60
Согласно формулам имеем:
Таким образом, регрессионная модель имеет вид: ŷ=127,22+(-2,13)х.
у1= 127,22+(-2,13)*10= 105,92
Для анализа силы линейной зависимости прибыли от ставки налога найдем коэффициент корреляции по формуле:
Данное значение коэффициента корреляции позволяет сделать вывод о том, что связи между прибылью и ставкой налога не чуществует.
Средняя относительная ошибка аппроксимации для нашего примера рассчитывается как среднеарифметическая относительных отклонений по каждому наблюдению:
2.3. Стандартная ошибка регрессии характеризует уровень необъясненной дисперсии и для однофакторной линейной регрессии (m=1) рассчитывается по формуле:
Стандартная ошибка параметра b1 уравнения регрессии находится по формуле:
Стандартная ошибка параметра b0 определяется:
На основе стандартных ошибок параметров регрессии проверим значимость каждого коэффициента регрессии путем расчета t-статистик и их сравнении с критическим значением при уровне значимости α=0,05 и числом степеней свободы (12-m-1)=10: tкр=
Поскольку tb1 = -6,396<2,228, не подтверждается статистическая значимость коэффициента регрессии b1.
Поскольку tb0 =12,75 >2,228, гипотеза о статистической незначимости коэффициента b0 отклоняется. Это значит, что в данном случае нельзя пренебречь свободным членом уравнения регрессии, рассматривая уравнение:
у=127,22-2,13*х
Коэффициент детерминации в нашем случае рассчитывается по формуле:
Поскольку R2=0,804<12,75, то можно заключить, что введенный в регрессию фактор – ставка налога- не объясняет поведение показателя – прибыль.
Для оценки автокорреляции остатков рассчитываем значение критерия Дарбина-Уотсона по формуле:
Поскольку значение d меньше 2, то это позволяет сделать предположение о положительной автокорреляции остатков.
Запись полученных характеристик уравнения в стандартной форме имеет вид:
У=127,22-2,13х; rху=-0,9; R2=0,804; DW=0,17; А=16,9%
Стандарт ошибка (0,333) (9,98)
t-стат. (-6,396) (12,75)
2.4. При прогнозировании снижения налогового давления до 33% прибыль предприятия составит:
у = 127,22-2,13*33 = 56,93 (тыс.руб.)
4. Задача №3
4.1. Определим переменные модели, ориентируясь на показатели, которые необходимо найти. В задаче требуется определить какое количество нефти из поступающих сортов необходимо переработать, чтобы получить необходимый ассортимент продуктов переработки и максимальную прибыль.
Поэтому введем переменные:
- количество нефти 1 - го сорта, которое идет на изготовление продуктов А, В, С, Д;
- количество нефти 2 - го сорта, которое идет на изготовление продуктов А, В, С, Д;
- количество нефти 3а сорта, которое идет на изготовление продуктов А, В, С, Д;
- количество нефти 3б сорта, которое идет на изготовление продуктов А, В, С, Д;
- количество нефти 4 - го сорта, которое идет на изготовление продуктов А, В, С, Д.
Построим систему ограничений на лимиты по выходу продуктов переработки (по видам) из 1 тонны сырой нефти.
4.2. Учитывая, что в течении недели потребность в продуктах нефтепереработки группы А не превышает 170 тыс. тонн, то ограничение по данному виду выглядит:
0,6+0,5+0,4+0,4+0,3170 тыс. тонн
Ограничение по продуктам нефтепереработки группы В:
0,2+0,2+0,3+0,1+0,385 тыс. тонн
Ограничение по продуктам нефтепереработки группы С:
…+…+…+0,1+…20 тыс. тонн
Ограничение по продуктам нефтепереработки группы Д:
0,1+0,2+0,2+0,2+0,385 тыс. тонн
Построим ограничение по количество сырой нефти каждого вида, которая может поступить за неделю на завод:
По количеству нефти сорта А: По количеству нефти сорта В:
100 100
По количеству нефти сорта С: По количеству нефти сорта Д:
+200 100
Учитывая, что рентабельность переработки сырой нефти составляет: 1-го сорта – 1 у.е./т., 2-го сорта - 2 у.е./т., 3 – го сорта – а). при получении жидкого топлива 1,5 у.е./т, б). при получении смазочного масла 2,5 у.е./т., 4-го сорта – 0,7 у.е./т., величина прибыли от переработки нефтепродуктов составит: 1+2+1,5+2,5+0,7
4.3. Требование максимизации этого функционала записывается в виде: 1+2+1,5+2,5+0,7 max
Таким образом, оптимальная модель для решения задачи имеет вид:
1+2+1,5+2,5+0,7 max
0,6+0,5+0,4+0,4+0,3170 тыс. тонн
0,2+0,2+0,3+0,1+0,385 тыс. тонн
…+…+…+0,1+…20 тыс. тонн
0,1+0,2+0,2+0,2+0,385 тыс. тонн
100, 100, +200, 100
Список использованных источников
1. Миксюк С.Ф., Комкова В.Н. Экономико-математические методы и модели – Мн.: БГЭУ, 2006
2. Бородич С.А. Эконометрика – Мн.: Новое знание, 2001