Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Т...

Расположение установки на генплане оказывает влияние на компоновку в зависимости от того, устанавливается ли она совместно с другим оборудованием в одном помещении или отдельно. Если компоновка позволяет заменить кабельные связи шинными — это, как правило, приводит к повышению надежности.

Приближение конденсаторной установки к потребителю реактивной мощности, совмещение в общем помещении конденсаторной установки с другим электрооборудованием экономически выгодно.

Конструкция каркаса конденсаторных ячеек должна обеспечивать хорошую обозреваемость конденсаторов, изоляторов, предохранителей и другого оборудования при осмотре их под напряжением. К конденсаторам, предохранителям и контактам шин должен быть свободный доступ во время производства ремонта при снятом напряжении, а также возможность свободной замены конденсаторов и предохранителей без разборки всей ячейки. Конденсаторные установки выпускаются как для одностороннего, так и для двустороннего обслуживания. Для внутренних установок предпочтительно применение конденсаторных установок с односторонним обслуживанием. Для удобства эксплуатации конденсаторных установок при снятии и установке конденсаторов массой 60— 100кг желательно комплектно с конденсаторной установкой иметь рычажное или простое передвижное подъемное устройство. В предназначенных для установки конденсаторов помещениях устройство окон и отопление не требуются. Следует учитывать, что для северных районов при применении конденсаторов с синтетическим диэлектриком (соволом), который допускает работу при температуре не ниже —10 °С, устанавливать конденсаторные установки необходимо только в закрытых помещениях, где поддерживается температура не ниже —10 °С. В южных районах конденсаторные установки необходимо располагать по возможности с северной стороны здания. Конденсаторные установки можно устанавливать и на открытом воздухе.

При разработке узлов и отдельных элементов конденсаторных установок должны учитываться следующие требования:

конструкции должны обеспечивать необходимую степень надежности и быть удобными в монтаже и эксплуатации;

они должны выдерживать без повреждения усилия, которые могут возникать как в период эксплуатации, например при коротком замыкании, так и при транспортировке. Последнее особенно следует учитывать при крупноблочных электроконструкциях.

Конденсаторы работают со сравнительно высокими напряженностями поля в диэлектрике. Совместное действие этих напряженностей и высокой рабочей температуры приводит к сокращению срока службы конденсаторов. Поэтому вентиляция конденсаторных установок должна обеспечивать хорошую циркуляцию воздуха вокруг каждого конденсатора. Большое значение это имеет для конденсаторов, которые установлены в несколько ярусов один над другим. Для обеспечения хорошей вентиляции следует избегать горизонтальных межъярусных перегородок. При этом необходимо учитывать определенные расстояния между соседними конденсаторами и окружающими стенками, для того чтобы можно было всю поверхность конденсатора полностью использовать для отвода тепла.

Помещения, где устанавливаются конденсаторные установки, должны иметь естественную вентиляцию; если последняя не обеспечивает снижения температуры воздуха в помещении до уровня максимально допустимой, необходимо применять искусственную вентиляцию. Температура окружающего воздуха в помещении конденсаторных установок не должна превышать 35 °С.

Конденсаторные установки не допускается устанавливать в цехах с насыщенной токопроводящей пылью, с химически активной и взрывоопасной средой, а также в цехах, где конденсаторы могут подвергаться постоянным сотрясениям, вибрациям и ударам. При размещении конденсаторных установок в отдельном помещении для защиты от случайных прикосновений, к частям оборудования, находящимся под напряжением, должно предусматриваться сетчатое ограждение высотой не менее 1,7м от пола. При установке же в производственных помещениях могут предусматриваться сплошные ограждения из листовой стали с отверстиями для вентиляции. Корпуса (баки) конденсаторов, металлические конструкции, на которых они стоят, сетчатые ограждения, и другие нетоковедущие части конструкции конденсаторной установки должны быть заземлены и присоединены к общему контуру заземления подстанции, цеха. В ячейке ввода конденсаторной установки должны быть предусмотрены зажимы для присоединения переносных заземляющих устройств.

Конденсаторные установки (если их установлено две или несколько рядом или в одном помещении) с общей массой масла более 600кг должны быть расположены в отдельном помещении с выходом наружу или в общее помещение I и II степеней огнестойкости по пожарным требованиям, при этом под конденсаторной установкой напряжением выше 1 000 В должен быть устроен маслоприемник, рассчитанный, на 20% общей массы масла, содержащегося во всех конденсаторах.

8. Экономическая часть

8.1. Экономическая эффективность применения компенсирующих устройств и СРФ.


Капитальные затраты на установку оборудования компенсирующих устройств и СРФ.

Стоимость батарей конденсаторов:

по табл.16-19. [6] принимаем стоимость 1кВАр=2,15 у.е.

ЦБК=2,15*1800=3870 у.е.

Стоимость коммутационной аппаратуры:

4 вакуумных выключателя Ц=4*161=644 у.е.

4 разъеденителя Ц=4*16,5=66 у.е.

Стоимость батарей конденсаторов СРФ и реакторов:

ЦБК=2,15*7800=16770 у.е.

ЦР=1720*18=30960 у.е.

Стоимость коммутационной аппаратуры для СРФ:

6 вакуумных выключателя Ц=6*161=966 у.е.

4 разъеденителя Ц=6*16,5=99 у.е.

Потери активной энергии в конденсаторах БК и СРФ:

DРБК=DР*5000*С,

где С=0,009 у.е. за 1 квт*ч

DРБК=5,4*103*3000*0,009=150 у.е.

DРСРФ=23,4*103*3000*0,009=630 у.е.

Потери активной энергии в реакторах СРФ:

DРСРФ=6,5*103*18*3000*0,009=3000 у.е.

Затраты, связанные с проектированием и эксплуатацией компенсирующих устройств.

Приведенные затраты, связанные с проектированием и эксплуатацией КУ, могут быть записаны в виде

Зк=Гк+рНКк, (8.1)

где Гк—годовые эксплуатационные расходы; Кк—сметная стоимость КУ, т. е. капитальные затраты на их установку; рН — нормативный коэффициент эффективности капитальных затрат.

На стадии проектных проработок обычно пользуются укрупненными технико-экономическими показателями. В данном случае капитальные затраты и годовые эксплуатационные расходы удобнее представлять в функции удельных капитальных затрат kу.к и установленной мощности КУ Qк. При этих условиях можно записать   |

Кк= kу.кQк, (8.2)

Гк=ркkу.кQк+ Dру.кQкТк.максb, (8.3)

где рк — отчисления на амортизацию, текущий ремонт и обслуживание КУ; Dру.к — удельные потери мощности в КУ; Тк. макс — время использования максимальной мощности КУ; b — стоимость 1 кВт • ч потерянной энергии.

Принимаем kу.к=1, рН =1,1, рк=0,01Кк, kу.к=2,15 у.е./кВАр, Dру.к=0,003 кВт/кВАр, Т=3000ч., b=0,009 у.е./кВт

Кк=ЦБК+Цкомм.апп=3870+710=4580 у.е.

Зк=4580*0,1*2,15*1800+0,003*1800*3000*0,009+1,1*4580=1777644 у.е

Экономическая эффективность минимизации уровня гармоник.

Оценка экономической эффективности минимизации гармоник основывается на формуле приведенных затрат

З=рКосн+Ин, (8.4)

где Косн — единовременные капитальные вложения; Ин — ежегодные издержки производства; р — нормативный коэффициент эффективности капитальных вложений.

Для сравниваемых вариантов в формулу входят лишь составляющие, которые обусловлены наличи­ем гармоник или средств, минимизирующих уровни их, с учетом дополнительного эффекта, обусловленного минимизацией.

Ежегодные. издержки производства в рассматриваемом случае состоят из амортизационных отчислений на реновацию Ир и капитальный ремонт Ик.р, стоимости текущих ремонтов Ит.р, стоимости потерь электроэнергии Ип и прочих эксплуатационных расходов Иэ:

Ин=Ир+Ик.р+Ит.р+Ип+Иэ, (8.5)

Косн=Цк+Цр+Цкомм.апп.=16770+30960+846+99=48675 у.е.

Ир=0,2*48675=9735 у.е.

Ик.р=0,2*48675=9735 у.е.

Ит.р.=0,01*48675=487 у.е.

Ип=630+3000=3630 у.е.

Иэ=0,01*48675=487 у.е.

З=1,1*48675+9735*2+487*2+3630=79700 у.е.

Суммарные затраты З=1777644+79700=1857344 у.е.

Экономический эффект от модернизации.

Дополнительные потери активной мощности при передаче реактивной

Ц=DР*С*Т,

Ц=559*103*0,009*5000=25000 у.е.

Потери в кабельных линиях от низкого коэффициента мощности

Ц=495 у.е.

Потери в электрических машинах от несинусоидального напряжения

Синхронные двигатели можно не учитывать.

Потери в трансформаторах

Ц=600*103*0,009*5000=28700 у.е.

Плата за потребление реактивной мощности.

По табл. 3.6. [8] С=0,0007 у.е./кВАр

Ц=(7800+1800)*0,0007*5000=33600 у.е.

Затраты на установку и обслуживание реакторов на ГПП-33

Стоимость реакторов Ц=4*6000=24000 у.е.

Зк=Гк+рНКк,

где Гк=Заморт.+Зтек.рем.+Зобслуж. – эксплуатационные затраты,

Кк—сметная стоимость реакторов, т. е. капитальные затраты на их установку; рН — нормативный коэффициент эффективности капитальных затрат.

Заморт.=0,12Кк,

Зтек.рем.= Зобслуж.=0,3*Заморт,

Зк=0,12*24000+0,036*24000*2+1,1*24000=31008 у.е.

Суммарная эффективность З=25000+495+28700+33600+31008=118833 у.е.

Окупаемость модернизации составит Т=.

9. Охрана труда

9.1. Опасность поражения электрическим током в рудничных условиях


Действие электрического тока на организм.

Проходя через организм, электрический ток производит термическое, электролитическое и биологическое действия.

Термическое действие выражается в ожогах отдельных участков тела, нагреве кровеносных сосудов, нервов и т. п.

Электролитическое действие выражается в разложении крови и других органических жидкостей, вызывающем значительные нарушения их физико-химических составов.

Биологическое действие является особым специфическим процессом, свойственным лишь живой ткани. Оно выражается в раздражении и возбуждении живых тканей организма, что сопровождается непроизвольными судорожными сокращениями мышц, в том числе мышц сердца и легких. В результате могут возникнуть различные нарушения в организме, в том числе нарушение и даже полное прекращение деятельности органов дыхания и кровообращения. Раздражающее действие тока на ткани организма может быть прямым, когда ток проходит непосредственно по этим тканям и рефлекторным, т. е. через центральную нервную систему, когда путь тока лежит вне этих тканей.

Все это многообразие действий электрического тока приводит к двум видам поражения: электрическим травмам и электрическим ударам.

Электрические травмы — это четко выраженные местные повреждения тканей организма, вызванные воздействием электрического тока или электрической дуги. Различают следующие электрические травмы: электрические ожоги, электрические знаки, металлизация кожи и механические повреждения.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать