- среза:
МПа (6.10)
где D=93 мм – диаметр цилиндра;
hп=4 мм – толщина верхней кольцевой перемычки.
- изгиба:
МПа (6.11)
- сложное:
МПа (6.12)
допускаемые напряжения sS (МПа) в верхних кольцевых перемычках с учетом значительных температурных нагрузок находятся в пределах:
для поршней из алюминиевых сплавов…………….…30-40.
Удельное давление поршня на стенку цилиндра:
МПа (6.13)
МПа (6.14)
где Nmax=0.0025 МН – наибольшая нормальная сила, действующая на стенку
цилиндра при работе двигателя на режиме максималь-
ной мощности.
Для современных автомобильных и тракторных двигателей q1 = 0.3 ¸ 1.0 и q2 = 0.2 ¸ 0.7 МПа.
Гарантированная подвижность поршня в цилиндре достигается за счет установления оптимальных диаметральных зазоров между цилиндром и поршнем при различных тепловых нагрузках, возникающих в процессе работы дизеля. По статистическим данным для алюминиевых поршней с неразрезными юбками
∆r=(0.006 ¸ 0.008)D=0.007·93=0.651 мм (6.15)
∆ю = ( 0.001 ¸ 0.002 )D=0.002·93=0.186 мм (6.16)
Диаметры головки и юбки поршня:
мм (6.17)
мм (6.18)
Диаметральные зазоры в горячем состоянии:
(6.19)
мм
(6.20)
мм
где aц=11×10-6 1/К – коэффициент линейного расширения материала
цилиндра;
aп=22×10-6 1/К - коэффициент линейного расширения материала поршня;
Тц =383 К – температура стенок цилиндра;
Тr = 593 К – температура головки в рабочем состоянии;
Тю =413 К – температура юбки поршня в рабочем состоянии;
То =293 К – начальная температура цилиндра и поршня.
6.2 Расчет поршневого кольца
Поршневые кольца работают в условиях высоких температур и значительных переменных нагрузок, выполняя три основные функции:
– герметизации надпоршневого пространства в целях максимально возможного использования тепловой энергии топлива;
– отвода избыточной доли теплоты от поршня в стенки цилиндра;
– "управление маслом", т.е. рационального распределения масляного слоя по зеркалу цилиндра и ограничения попадания масла в камеру сгорания.
Материал кольца – серый чугун. Е=1.2·105 МПа.
Среднее давление кольца на стенку цилиндра:
(6.21)
МПа
где мм.
Давление кольца на стенку цилиндра в различных точках окружности при каплевидной форме эпюры давления:
, [МПа] (6.22)
Результаты расчета р, а также μк для различных углов ψ приведены ниже:
Угол ψ, определяющий положение текущего давления кольца, град |
0 |
30 |
60 |
90 |
120 |
150 |
180 |
Коэффициент μк |
1.05 |
1.05 |
1.14 |
0.90 |
0.45 |
0.67 |
2.85 |
Давление р в соответствующей точке, МПа |
0.224 |
0.222 |
0.218 |
0.214 |
0.218 |
0.271 |
0.320 |
По этим данным построена каплевидная эпюра давлений кольца на стенку цилиндра (рис. 5.2).
Напряжение изгиба кольца в рабочем состоянии:
МПа (6.23)
Напряжение изгиба при надевании кольца на поршень:
МПа (6.24)
Монтажный зазор в замке поршневого кольца:
(6.25)
мм
где мм – минимально допустимый зазор в замке кольца во время работы двигателя;
aк =11·10-6 1/К – коэффициент линейного расширения материала кольца;
aц =11·10-6 1/К – коэффициент линейного расширения материала гильзы;
Тк=493 К – температура кольца в рабочем состоянии;
Тц =383 К – температура стенок цилиндра;
То= 293 К – начальная температура.
6.3 Расчет поршневого пальца
Во время работы двигателя поршневой палец подвергается воздействию переменных нагрузок, приводящих к возникновению напряжений изгиба, сдвига, смятия и овализации. В соответствии с указанными условиями работы к материалам, применяемым для изготовления пальцев, предъявляются требования высокой прочности и вязкости. Этим требованиям удовлетворяют цементированные малоуглеродистые и легированные стали
Для расчета принимаем следующие данные:
наружный диаметр пальца dn=25 мм,
внутренний диаметр пальца db=16 мм,
длину пальца ln=80 мм,
длину втулки шатуна lш=40 мм,
расстояние между торцами бобышек b=44 мм.
Материал поршневого пальца – сталь 15Х, Е=2·105 МПа.
Палец плавающего типа.
Расчет поршневого пальца включает определение удельных давлений пальца на втулку верхней головки шатуна и на бобышки, а также напряжений от изгиба, среза и овализации.
Максимальные напряжения возникают в пальцах дизелей при работе на номинальном режиме.
Расчетная сила, действующая на поршневой палец:
– газовая
МН (6.26)
где рzmax=рz=6.356 МПа – максимальное давление газов на номинальном
режиме;
мм2 – площадь поршня;
– инерционная
МН (6.27)
где рад/с
– расчетная
МН (6.28)
где k =0.82 – коэффициент, учитывающий массу поршневого пальца.
Удельное давление (МПа) пальца на втулку поршневой головки шатуна
МПа (6.29)
где м – наружный диаметр пальца;
м – длина опорной поверхности пальца в головки шатуна.
Удельное давление пальца на бобышки
МПа (6.30)
Напряжение изгиба в среднем сечении пальца:
(6.31)
МПа
где a=dв/dп=0.64 – отношение внутреннего диаметра пальца к наружному.
Для автомобильных и тракторных двигателей [ sиз ] = 100 ¸ 250 МПа.
Касательные напряжения среза пальца в сечениях между бобышками и головкой шатуна:
(6.32)
Мпа
Для автомобильных и тракторных двигателей [t] = 60 ¸ 250 МПа.
Максимальная овализация пальца (наибольшее увеличение горизонтального диаметра ∆ dnmax, мм) наблюдается в его средней, наиболее напряженной части:
(6.33)
мм
где Е = 2·105 МПа – модуль упругости материала пальца.
Напряжение овализации на внешней поверхности пальца:
- в горизонтальной плоскости (точки 1, ψ=0º):
(6.34)
МПа
-в вертикальной плоскости (точки 3, ψ=90º):
(6.35)
МПа
Напряжение овализации на внутренней поверхности пальца:
- в горизонтальной плоскости (точки 2, ψ=0º):
(6.36)
МПа;
-в вертикальной плоскости (точки 4, ψ=90º):
(6.37)
МПа.
7. КОНСТРУКТОРСКИЙ РАЗДЕЛ
Конструкторский раздел предназначен для рассмотрения основной задачи данной работы — усовершенствования системы охлаждения двигателя ЗМЗ 406 применяемого на автомобилях ГАЗ 2705, 3221 «ГАЗЕЛЬ» и их модификациях. При этом изменения в двигателе принятые в тепловом расчете, т.е. форсирование двигателя для повышения его тяговых и скоростных характеристик приняты как перспективные и представляющие интерес с практической, а в данном случае еще и с теоретической точки зрения. Принимая данные, полученные в тепловом расчете, и учитывая ,что после форсирования двигателя увеличилась мощность нетто, а следовательно тепловой режим стал более напряженным был проведен расчет системы охлаждения.
7.1 Расчет жидкостной системы охлаждения
Модернизируя систему охлаждения двигателя внутреннего сгорания проведем предварительный её расчет согласно материалу, изложенному в [4]. Однако данный расчет является проверочным и ведётся в первом приближении с тем, чтобы сохранить геометрические, тепловые и иные параметры основных деталей системы охлаждения максимально унифицируя её с существующей конструкцией в случае доработки. При расчете системы охлаждения двигателя исходной величиной является количество отводимого от него в единицу времени тепла Qω (ккал/ч). Это количество может быть определено из уравнения теплового баланса, или (ориентировочно) на основании экспериментальных данных. В данной работе используем второй вариант, на основании экспериментальных данных, выбирая коэффициенты и эмпирические данные предполагая наиболее напряженный тепловой режим работы.
В качестве циркулирующей охлаждающей жидкости принимаем этиленгликолевую незамерзающую смесь (антифриз).
Таким образом, количество тепла отводимого от двигателя в единицу времени:
Qω=qωNeN=860∙85,0232∙1,36=99443,135 ккал/ч, (7.1)
где qω=860 ккал/(л.с.∙ч)— количество отводимого от двигателя тепла,
для карбюраторных ДВС обычно qω=830…860 ккал/(л.с.∙ч);
NeN=85,0232 кВт— наибольшая мощность двигателя.
Находим количество жидкости (кгс/ч), циркулирующей в системе охлаждения в единицу времени,
кгс/ч (7.2)
где сω=0,5 ккал/(кгс∙°С)— теплоемкость циркулирующей жидкости;
=5 °C— разность температур входящей в радиатор и
выходящей из него жидкости.
7.2 Расчет радиатора
Величину поверхности охлаждения радиатора в первом приближении (м2) с достаточной точностью определим по простейшей формуле и сравним с существующей (FД=20 м2):
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16