Получение молибдена из отходов промышленности

Молибден вводят в стали в виде сплава с железом - ферромолиб­дена  [14]. Молибдена в ферросплавах не менее 50%.

Проволока и прутки из чистого молибдена применяются для холоднокатаной арматуры, вводов, анодов радио- и электроламп, элементов со­противления высокотемпературных печей с защитной атмосферой, высокотемпературных термопар. Листовой молибден применяется в машиностроении как жаропрочный материал, а в радиоэлектронике – для анодов мощных радиоламп, защитных экранов высокотемпературных электропечей и для других целей. Из молибденового порошка получают «псевдосплавы» (сплавы-смеси) с серебром для электротех­нических контактов, карбид молибдена применяется в твердых сплавах, силицид молибдена MoSi2 – в жаростойких изделиях. Последний, как указывалось, применяется в элементах сопротивления электропечей, работающих до 1600°С без защитной атмосферы. Соединения молибдена применяются как катализаторы в органическом синтезе и как реактивы в аналитической химии (парамолибдат аммония и комп­лексные соединения молибдена), в производстве лаков и красок для шерсти и шелка. В сельском хозяйстве используются соединения мо­либдена в виде слабых растворов: он облегчает усвояемость растения­ми питательных веществ из почвы. Но в то же время большие дозы молибдена оказывают токсическое действие на растительные и живот­ные организмы.

Из MoS2 готовят сухую смазку для деталей механизмов, работаю­щих при повышенной температуре. Его смазывающее действие эффек­тивнее, чем графита.

Молибденовые рудные концентраты перерабатывают на ферромолиб­ден, молибдат кальция, МоО3, парамолибдат аммония, MoS2. Пер­вые два – полуфабрикаты для производства молибденсодержащих сталей, парамолибдат аммония – полуфабрикат для производства чистых соединений молибдена и самого молибдена.

Первое место в мире по потреблению молибденовой продукции занимает Западная Европа (35%), за ней следуют США (25%) и Япония (17%). На долю этих регионов приходится более 90% мирового использования молибдена [20].

В последние годы значительно увеличился выпуск молибденовых концентратов в Канаде и Чили, которые в мире вышли в этой области соответственно на второе и третье места. Значительные залежи молибденовых руд есть в России, которая также производит довольно большие количества его как для собственной металлургической промышленности так и на экспорт. Товар­ная продукция молибдена в США выпускается в виде трехокиси, по­рошка молибдена, молибдатов аммония и натрия, ферромолибдена, сульфида молибдена MoS2 и др.


2.8 Экологическое влияние отходов молибденовой промышленности


При переработке молибденовых руд большое количество молибдена теряется на разных этапах переработки сырья. При этом возможно как отравление персонала работающего на предприятии так и негативное влияние на природу.

Токсичность молибдена проявляется при поступлении молибдена более 15 мг в сутки. При поступлении таких количеств молибдена наблюдаются следующие симптомы:

истощение, токсикоз;

подагра (при сопутствующем дефиците кальция);

нарушение функций иммунитета;

изменение функций костного мозга, тимуса, селезенки;

хронический профессиональный молибденоз (повышение содержания мочевой кислоты и молибдена в сыворотке крови, артрозы, гипотония, анемия и лейкопения, желудочно-кишечные заболевания, атаксия, резкие нарушения обмена веществ).

«молибденовая подагра» (болезнь Ковальского), которая часто встречается в Армении.

При поступлении молибдена в больших количествах он усваивается растениями, растения содержат молибден в листьях и побегах. При этом они становятся токсичны. Растения имеют свойство извлекать и концентрировать молибден в зеленой массе, поэтому его содержание в ней будет выше, чем в почве. Это приведет к отравлению молибденом животных. Поэтому отвалы после переработки молибденовых руд следует покрывать слоем земли для упреждения разноса ветром  породы. Также такие отвалы следует изолировать от грунтовых вод, поскольку молибден может просачиваться в грунтовые воды и отравлять их [1, 3].  

Глава 3. Методы и методики получения молибдена и его соединений


3.1 Основы технологии переработки молибденовых руд


Основной метод обогащения молибденовых руд – флотация. Наи­более просто обогащаются руды жильных кварц молибденовых место­рождений. В результате первоначальной коллективной флотации получают концентрат с 5 – 10% Мо [2, 8]. Селективную флотацию молибде­нита проводят затем при подавлении флотации других сульфидов. После переочисток получают стандартный концентрат с 80 – 90% MoS2 при общем извлечении до 90 – 95 % и выше. Низкосортные молибденовые концентраты и промежуточные про­дукты подвергают «химическому» обогащению, иначе говоря, гидрометаллургической переработке с получением в итоге молибдата каль­ция для ферросплавной промышленности. Такая комбинация флота­ционного обогащения и гидрометаллургической обработки позволяет экономичнее достигать большего извлечения молибдена из руды, чем это можно было бы сделать флотационными методами. Концентраты, содержащие молибден в виде молибденита, обрабатывают, прежде всего, для окисле­ния серы сульфидов. С этой целью в промышленности наиболее часто прибегают к окислительному обжигу. Вместо обжига может применять­ся малораспространенная в заводской практике обработка сильными окислителями в водной среде: азотной кислотой, гипохлоритом, кисло­родом или воздухом под давлением, либо хлорирование [8]. Огарки, полу­чаемые после обжига богатых и чистых концентратов, используют в производстве ферромолибдена, для получения чистой трехокиси мето­дом возгонки и для химической переработки на чистые соединения молибдена. Последние, в свою очередь, могут использоваться для полу­чения металла высокой чистоты. Огарки от обжига более бедных, низко­сортных концентратов и промпродуктов обогащения обязательно под­вергают химической переработке. В процессе обжига до 30 – 40% Мо и основная масса Re переходят в пыль и газы.

Первичная обработка в окисляющих растворах может быть при­менена для любых концентратов. Растворы, полученные после окисли­тельного выщелачивания концентратов, очищают от примесей, после чего из них выделяют необходимые соединения молибдена и рения. Из полученных растворов чистые молибденовые и рениевые соедине­ния могут быть селективно выделены ионообменом или экстракцией.


3.2 Получение парамолибдата аммония (NH4)6Mo7O24 × 4H2O


Химическую переработку «огарков» после обжи­га богатых высококачественных концентратов производят с целью полу­чения чистых соединений молибдена – парамолибдата аммония и молибденового ангидрида [20, 23]. Из этих последних в случае необходимости легко получить любые другие соединения, в том числе и соединения вы­сокой чистоты. Молибденовый ангидрид, находящийся в огарке, раство­ряется в растворах аммиака, щелочей, соды, некоторых кислот. Но щелочные металлы – нежелательные примеси для соединений молиб­дена, применяемых в электротехнической и химической промышлен­ности. В щелочах, соде и кислотах растворяется большое число и дру­гих примесей.

Раствор аммиака обладает тем преимуществом, что в нем не растворимо большинство примесей, сопутствующих молибдену в огарке. По­этому аммиачный способ переработки богатых молибденовых огарков более распространен. Его преимуществами, помимо высокого извлече­ния МоО3 в раствор и достаточно полного отделения примесей, явля­ются простота дальнейшей очистки аммиачного раствора, легкость вы­деления молибдена в виде чистого парамолибдата аммония, простота подбора материала для аппаратуры. Схема аммиачного метода пере­работки огарков после обжига молибденита представлена на рис.3

Рис. 3. Cхема переработки огарков с кислотным разложение хвостов выщелачивания

Перед обработкой раствором аммиака рекомендуется промывать огарок водой для удаления растворимых в воде сульфатов (CuSO4, части CaSO4 и др.) и солей щелочных металлов. Но так как при этом несколько теряется молибден, то промывают не всегда. Потеря молиб­дена при промывке достигает 4 – 5% [20].

При обработке огарка аммиаком происходят реакции:

MoO2 + 2NH4OH = (NH4 )2МоО3 +H2О

CuO + 4NH4OH = [Cu(NH3)4](OH)2 + 3H2O

CuMoO4 + 6NH4OH = [Cu (NH3)4] (OH)2 + (NH4)2 MoO4 + 4H2О

ZnMoO4 + 6NH4OH = (NH4)2 MoO4 + [Zn (NH3)4] (OH)2 + 4H2O NiMoO4 + 6NH4OH = (NH4)2 MoO4 + [Ni (NH3)4] (0H)2 + 4H2O

Аналогично молибдатам реагируют сульфаты меди, цинка, никеля и железа, если они образовались при обжиге. Железо (II) (в составе сульфата или окиси) частично реагирует по уравнению

FeSO4 + 4NH4OH → [Fe (NH3)4] SO4 + 4H2О

и переходит в раствор в составе комплекса. Железо (III), образующееся в результате окисления Fe2+ кислородом воздуха при обжиге и выщелачивании, частично остается в составе химически стойкого Fe3O4, частично дает нерастворимую гидроокись Fe(OH)3.

Остаются без изменения МоО2, СаМоО4, кварц, неокислившиеся при обжиге сульфиды. В аммиачные растворы в зависимости от минерало­гического состава концентрата и условий обжига переходит 80 – 95% молибдена. Для более полного перевода молибдена в раствор добавля­ют 60 – 80 кг (NH4)2CO3 на 1 т огарка. Влияние карбоната аммония на извлечение молибдена связано со следующими реакциями:

CaSО4 + (NH4)2 MoO4 → CaMoO4 + (NH4)2 SO4

CaSО4 + (NH4)2 CO3 → Ca CO3 + (NH4)2 SO4

Растворимость CaSO4 и СаМоО4 соответственно 2 и 0,028 г/л при 20°С. Поэтому реакция смещена в сторону образования СаМоО4. Без добавки (NH4)2CO3 в процессе выщелачивания раствором аммиака сульфат кальция, образовавшийся в огарке в ходе обжига, превраща­ется в СаМоО4, устойчивый в аммиачных растворах. Добавка (NH4)2CO3 ведет к образованию СаСО3 из CaSO4. Возможно и частичное растворение СаМоО4:

СаМоО4 + (NH4)2 CO3 = (NH4)2 МоО4 + СаСО3

Осаждение СаСО3 на частицах CaSO4 затрудняет растворение последнего [20]. Осаждение его же на зернах СаМоO4 прекращает растворение последнего. Кроме того, благодаря наличию ионов СО в растворе в отвальные хвосты переходит не гидроокись железа, а карбонат, ко­торый меньше адсорбирует молибден. Это снижает переход молибдена в остатки от выщелачивания. Сухой остаток после выщелачивания и сушки составляет 10 – 30% от массы огарков. В нем 5 – 25% Мо. Поэтому на заводах дополнительно обрабатывают остаток по особой схеме.

В заводских условиях огарок выщелачивают 8 – 10%-ным раство­ром аммиака при 20 – 60° С [23]. Процесс проводят во вращающихся горизонтальных герметических стальных барабанах с шарами или в вертикальных реакторах с мешалками. Вращающиеся герметические барабаны более экономичный по извлечению молибде­на, и по расходу аммиака процесс. Процесс в обоих случаях периодический и идет в несколько стадий, хотя в принципе возможна организация не­прерывного или полунепрерывного выщелачивания в каскадах герметизированных реакторов. Раствор с первых стадий поступает на очистку и дальнейшее извлечение молибдена. Слабые растворы и промывные воды поступают на первую стадию. Общий расход аммиака на всех стадиях в зависимости от состава концентрата и аппаратуры колеблется в пределах 115 – 140% от теоретически необходимого количества. В крепких растворов плотность более 1,1 г/см3,они содержат 140 – 190 г/л МоО3. Остатки от выщелачивания отфильтровывают на фильтрах не­прерывного или периодического действия [8].

Страницы: 1, 2, 3, 4, 5, 6, 7



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать