При параллельном соединении кинематических пар КПД определяется как среднее арифметическое КПД отдельных пар, при условии, что поток мощности распределяется равномерно между кинематическими парами:
η=(η1+η2+…+ηк)/к , где к-число кинематических пар.
Суммарный КПД для нашего механизма (Рисунок 14) равен:
η∑= [(ηс+ηс)/2]·ηс·ηк·ηпн2·ηпн4·ηк·[(ηс+ηс)/2]= ηс·ηс·ηк·ηпн2·ηпн4·ηк·ηс=
= η3с· η2к·ηпн2·ηпн4 , (11)
где ηс=0,98 – КПД подшипника скольжения;
ηк=0,99 – КПД подшипника качения;
ηпн2=0,86 – КПД кинематической пары «ползун по направляющей»;
ηпн4=0,86 – КПД кинематической пары «пуансон по направляющей»;
Т.к. сила, определяющая в направляющих потери на трение, была учтена явным образом при подсчёте статического момента, то в формулу вычисления КПД она не входит.
η∑=(0,98)3·(0,99)2·0,86·0,86=0,68.
Расчёт движущего момента М∑(φ)
По формуле (1) мы определяем момент движущих сил, считая, что кинематические пары идеальны. Однако силы трения присутствуют всегда, и их обычно учитывают с помощью коэффициента полезного действия – КПД.
Выражение для суммарного момента движущих сил М∑ с учётом потерь на трение примет вид:
М∑=k·(Мст+Мдин) , (12)
где k – коэффициент, учитывающий присутствие сил трения в кинематических парах, равный: k=η , если (Мдв<0) – соответствуетработе привода в режиме генератора (когда привод играет роль тормоза);
k=1/η , если (Мдв>0) – соответствует работе привода в режиме двигателя.
Используя данные Таблицы 4, рассчитаем суммарный момент движущих сил М∑ для всех выбранных положений механизма:
М∑1=Мдв1/η=82,5/0,68=121,32 (н·м);
М∑2=Мдв2/η=115,2/0,68=169,41 (н·м);
М∑3=Мдв3/η=138,8/0,68=204,12 (н·м);
М∑4=Мдв4/η=78,91/0,68=116,04 (н·м);
М∑5=Мдв5/η=123,6/0,68=181,76 (н·м);
М∑6=Мдв6·η=-151·0,68=-102,68 (н·м);
М∑7=Мдв7·η=-87,9·0,68=-59,77 (н·м);
М∑8=Мдв8·η=-1,85·0,68=-1,26 (н·м);
М∑9=Мдв9/η=12,92/0,68=19 (н·м);
М∑10=Мдв10·η=-1,07·0,68=-0,73 (н·м);
М∑11=Мдв11·η=-13,3·0,68=-9,04 (н·м);
М∑12=Мдв12·η=-14,6·0,68=-9,93 (н·м);
М∑13=Мдв13/η=82,5/0,68=121,32 (н·м);
Полученные данные приведены в Таблице 4.
Зависимость М∑(φ) представлена на Рисунке 13.
Таблица 4.
Результаты расчёта момента движущих сил и его составляющих.
№ положения
1
2
3
4
5
6
7
8
9
10
11
12
1
φ, рад
0
π/6
π/3
π/2
2π/3
5π/6
π
7π/6
4π/3
3π/2
5π/3
11π/6
2π
Мст, н•м
82,5
61,58
33,41
87,5
205,2
-59,6
-82,5
-89,2
-56,4
0
47,9
75,48
82,5
Q , кН
0
0
0
1,75
5,54
0
0
0
0
0
0
0
0
Iпр, кг•м²
0,263
0,491
1,037
1,225
0,907
0,457
0,263
0,613
0,959
1,223
1,01
0,579
0,263
I´пр, кг•м²/рад
0
0,5
0,982
-0,08
-0,76
-0,85
-0,05
0,814
0,646
-0,01
-0,57
-0,84
0
Мдин, н•м
0
53,66
105,4
-8,59
-81,6
-91,2
-5,37
87,35
69,32
-1,07
-61,2
-90,1
0
Мдв, н•м
82,5
115,2
138,8
78,91
123,6
-151
-87,9
-1,85
12,92
-1,07
-13,3
-14,6
82,5
М∑, н•м
121,3
169,4
204,1
116
181,8
-103
-59,8
-1,26
19
-0,73
-9,04
-9,93
121,3
Рисунок 13. Изменение суммарного момента движущих сил и его составляющих от угла поворота кривошипа.
ВЫБОР РЕДУКТОРА (*)
Для выбора редуктора необходимо определить передаточное число редуктора, характер нагрузки, число оборотов быстроходного вала редуктора и расчётный момент Мрасч, который определяется по формуле:
Мрасч=k1·k2·Мн , (13)
где k1=1 (т.к. nдв≤1500 об/мин) – коэффициент, который отражает влияние повышенной частоты вращения вала электродвигателя;
k2 – коэффициент, отражающий влияние характера нагрузки;
Мн – такой постоянный по величине момент, который совершает за один технологический цикл ту же работу, что и реальный суммарный момент М∑(φ). Формула для определения номинального момента имеет вид:
Мн=·∫ М∑(φ)dφ , (14)
Для определения Мн подсчитаем площадь под графиком суммарного момента М∑(φ) (Рисунок 13), которая равна S=498,9 (н·м/с) и затем найдём номинальный момент Мн по формуле (14): Мн=·498,9=79,4 (н·м).
По графику суммарного момента М∑(φ) (Рисунок 13) определим характер нагрузки – сильные толчки. Следовательно, коэффициент k2=2,8.
По формуле (13) найдём Мрасч:
Мрасч=1·2,8·79,4=222,32 (н·м).
Найдём передаточное отношение зубчатой передачи:
i=nдв/n1=480/140=3,4 ,
где nдв – частота вращения вала двигателя;
n1 – число оборотов кривошипа.
По расчётному моменту Мрасч и пердаточному числу i из каталога [3] выбираем мотор-редуктор цилиндрический одноступенчатый МЦ-100. Допускаемый крутящий момент T на выходном валу равен 230 н·м.
Для выбранного редуктора найдём передаточное число iф=3,57, и определим погрешность по передаточному числу δi и по допускаемому крутящему моменту δТ:
δi=(iф-i)/i=[(3,57-3,4)/3,4]·100%=5%;
δТ=(T-Мрасч)/Мрасч=[(230-222,32)/222,32]·100%=3,45%.
Параметры редуктора приведены в Таблице 5.
Характеристики подшипника качения приведены в Таблице 6.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8