Существенную радиобиологическую роль играет взаимодействие свободных радикалов с молекулами кислорода. Оно ведет к возникновению перекисных радикалов водорода и органических молекул, которые могут затем реагировать с другими органическими молекулами ткани. Усиление радиационного повреждения клеток и тканей живого организма в присутствии кислорода носит название кислородного эффекта.
Прямое и косвенное воздействие излучений на биологически важные молекулы ведет к обширным биологическим изменениям в облученном организме, которые можно схематически представить как изменения на различных уровнях биологической организации от молекулы до целостного организма. Эти типы радиационных поражений приведены в таблице 1:
Таблица 1. Типы радиационного поражения у млекопитающих
Уровень биологической организации
Важнейшие радиационные эффекты
Молекулярный
Повреждение
макромолекул ферментов, ДНК, РНК
и воздействие на обменные процессы
Субклеточный
Повреждение клеточных мембран, ядер, хромосом, митохондрий и лизосом
Клеточный
Остановка деления и гибель клеток; трансформация в злокачественные клетки
Ткань, орган
Поражение ЦНС, костного мозга, желудочно-кишечного тракта; вероятность гибели, обусловленной злокачественным ростом
Целостный организм
Смерть или сокращение продолжительности жизни, вызванное радиацией
Популяция
Изменения генетической характеристики у отдельных индивидуумов под влиянием генных и хромосомных мутаций
Развитие радиационного поражения
Вслед за поглощением энергии ионизирующего излучения, сопровождаемым физическими изменениями клеток, происходят процессы химического и биологического характера, которые закономерно приводят прежде всего к повреждению критических биомолекул в клетке. Этот процесс протекает менее 10-6 с, тогда как окончательное проявление биологического поражения может растягиваться ца часы, дни и даже десятилетия.
Для жизненной функции клеток решающее значение имеют белки и нуклеиновые кислоты. Белки — главный органический компонент цитоплазмы. Некоторые белки относятся к структурным элементам клетки, другие — к имеющим важное значение ферментам. Радиационное повреждение белков состоит в уменьшении их молекулярной массы в результате фрагментации полипептидных цепочек, в изменении растворимости, нарушении вторичной и третичной структуры, агрегировании и т. п. Биохимическим критерием радиационного повреждения ферментов является утрата ими способности осуществлять специфические реакции. При интерпретации пострадиационных изменений ферментативной активности in vitro наряду с радиационными нарушениями самого фермента следует учитывать и другие повреждения клетки, прежде всего мембран и органелл. Чтобы вызвать явные изменения ферментативной активности в условиях in vitro, требуются значительно большие дозы, чем in vivo.
Наиболее существенные повреждения клетки возникают в ядре, основной молекулой которого является ДНК. Ядро у млекопитающих проходит четыре фазы деления; из них наиболее чувствителен к облучению митоз, точнее его первая стадия — поздняя профаза. Клетки, которые в момент облучения оказываются в этой стадии, не могут вступить в митоз, что проявляется первичным снижением митотической активности спустя 2 ч после облучения. Клетки, облученные в более поздних стадиях митоза, или завершают цикл деления без каких-либо нарушений, или в результате инверсии обменных процессов возвращаются в профазу. Речь идет о радиационной синхронизации митозов, когда клетки с запозданием снова начинают делиться и производят чисто внешнюю компенсацию первоначального снижения митотической активности. Нарушения ДНК могут вести к атипическому течению клеточного деления и появлению хромосомных аберраций. Неделящиеся клетки пребывают в длительной интерфазе, оставаясь по большей части вне влияния тех доз излучения, которые вызывают репродуктивный отказ делящихся клеток.
С нарушением клеточной мембраны связаны радиационные изменения поведенческих функций ЦНС. Радиационное повреждение эндоплазматического ретикулума приводит к уменьшению синтеза белков. Поврежденные лизосомы высвобождают катаболические ферменты, способные вызвать изменения нуклеиновых кислот, белков и мукополисахаридов. Нарушение структуры и функции митохондрий снижает уровень окислительного фосфорилирования.
Перечисленные изменения субклеточных структур только намечены, исследования в данной области ведутся.
Стволовые клетки костного мозга, зародышевого эпителия тонкого кишечника, кожи и семенных канальцев характеризуются высокой пролиферативной активностью. Еще в 1906 г. Бергони и Трайбондо сформулировали основной радиобиологический закон, согласно которому ткани с малодифференцированными и активно делящимися клетками относятся к радиочувствительным, а ткани с дифференцированными и слабо или вообще не делящимися клетками — к радиорезистентным. По этой классификации кроветворные клетки костного мозга, зародышевые клетки семенников, кишечный и кожный эпителий являются радиочувствительными, а мозг, мышцы, печень, почки, кости, хрящи и связки — радиорезистентными. Исключение составляют небольшие лимфоциты, которые (хотя они дифференцированы и не делятся) обладают высокой чувствительностью к ионизирующему излучению. Причиной, вероятно, является их выраженная способность к функциональным изменениям. При рассмотрении радиационного поражения радиочувствительных тканей следует учитывать, что и чувствительные клетки, находясь в момент облучения в разных стадиях клеточного цикла, обладают различной радиочувствительностью. Очень большие дозы вызывают гибель клеток независимо от фазы клеточного цикла. При меньших дозах цитолиз не происходит, но репродуктивная способность клеток снижается в зависимости от полученной ими дозы. Часть клеток остается неповрежденной либо может быть полностью восстановленной от повреждений. На субклеточном уровне репарация радиационного поражения происходит, как правило, в течение нескольких минут, на клеточном уровне — нескольких часов, на уровне ткани — дней и недель, а в целом организме млекопитающего — в течение месяцев. Обратимая компонента составляет примерно 90% начального радиационного поражения. Считается, что репарация 50% обратимого поражения у человека занимает примерно 30 (25-45) дней. Остальная часть обратимого поражения полностью репарируется через 200 ± 60 дней после окончания однократного сублетального облучения. Чем больше относительная биологическая эффективность (ОБЭ) излучений, тем меньше у организма возможности восстановления. Необратимая компонента нейтронного облучения составляет более 10% начального поражения.
Пострадиационная убыль клеток вследствие их гибели в интерфазе, а также утрата репродуктивной способности части клеток особенно серьезны для тех непрерывно обновляющихся клеточных популяций, зрелые формы которых имеют физиологически ограниченное время жизни, после чего они отмирают. Чем короче цикл созревания и средний срок жизни зрелых клеток какой-либо системы, тем выраженное и чаще бывают нарушения этой системы в период после облучения. Те важные органы и системы, выход из строя которых приводит к гибели организма, называются критическими. Так, к основному тканевому поражению в диапазоне доз (на все тело) 1-10 Гр относится нарушение кроветворной функции, получившее название костномозгового синдрома. Доза, при которой выживает 37% стволовых кроветворных клеток (Д0) у мышей, составляет 1 Гр. При костномозговом синдроме возникают серьезные нарушения репродуктивной способности гемопоэза. Эти нарушения с течением времени после облучения определяют изменения в периферической крови в зависимости от среднего времени жизни форменных элементов крови и дозы излучения.
Для убыли форменных элементов в периферической крови характерна определенная последовательность во времени, сопровождаемая следующими функциональными изменениями.
1. Сокращение числа лимфоцитов отмечается сразу же после облучения и достигает максимума на 1–3-й сутки. Оно проявляется ослаблением или подавлением как клеточных, так и гуморальных иммунологических реакций.
2. Уменьшение количества нейтрофильных гранулоцитов (после временного 1–2-суточного лейкоцитоза, обусловленного выбросом нейтрофилов из депо организма) достигает нулевой отметки на 4-е и 5-е сутки в случае летального облучения. При меньших дозах количество нейтрофилов постепенно сокращается, его минимум приходится на 2–4-ю неделю после экспозиции. Гранулоцитопения понижает сопротивляемость организма к инфекциям.
3. Уменьшение числа тромбоцитов происходит параллельно с сокращением количества нейтрофилов или на несколько суток позже. Дефицит тромбоцитов вместе с радиационным поражением эндотелия сосудов проявляется геморрагическим синдромом.
4. Содержание эритроцитов ежесуточно снижается примерно на 0,8%, что усугубляется кровотечениями и явлениями гемолиза. За первый месяц после облучения потеря эритроцитов может достигнуть 25% от исходного уровня. Анемия замедляет процессы репарации, а дефицит кислорода в костном мозге нарушает его способность восстанавливать гемопоэз.
У мышей Д0 стволовых клеток кишечника составляет 4–6 Гр. Следовательно, они в несколько раз более радиоустойчивы, чем стволовые кроветворные клетки. При дозах 10—100 Гр решающим в течении пострадиационного процесса является поражение кишечного эпителия. Основная причина его гибели состоит в том, что в условиях денудации слизистой оболочки тонкого кишечника происходит потеря жидкости, электролитов и белков, сопровождаемая микробной инвазией и токсемией, ведущими к септическому шоку и недостаточности кровообращения. Радиационные изменения эпителиального слоя желудка, толстого кишечника и прямой кишки примерно такие же, но выражены значительно меньше. Хотя решающим патогенетическим фактором данного синдрома является денудация слизистой оболочки кишечника, следует иметь в виду, что параллельно с этим постепенно развиваются нарушения кроветворной функции. Одновременное тяжелое необратимое поражение обеих критических систем организма при облучении в дозах 10–100 Гр приводит к быстрой и неизбежной гибели.