Менее строгие требования предъявляются к радиопротекторам, предназначенным для использования в радиотерапии. Они усложняются, однако, важным условием — необходимостью дифференцированного защитного действия. Следует обеспечить высокий уровень защиты здоровых тканей и минимальный — тканей опухоли. Такое разграничение позволяет усилить действие местно примененной терапевтической дозы облучения на опухолевый очаг без серьезного повреждения окружающих его здоровых тканей.
РАДИОЗАЩИТНЫЕ ВЕЩЕСТВА КРАТКОВРЕМЕННОГО ДЕЙСТВИЯ
К ним относятся разные типы химических соединений. Их классификация по химической структуре и предполагаемому механизму действия впервые дана в монографии Бакк (1965), а позже — в работе Суворова и Шашкова (1975). В 1979 г. Суини опубликовал обзор химических радиопротекторов, изученных в рамках обширной исследовательской программы вооруженных сил США. В радиобиологических лабораториях Армейского исследовательского института им. Уолтера Рида в Вашингтоне, а также в целом ряде американских университетов в 1959—1965 гг. испытано около 4400 различных химических веществ. Помимо этого, в радиационной лаборатории ВВС США в Чикаго было проверено радиозащитное действие еще 1500 веществ.
В результате проведенного анализа к клиническому применению была рекомендована небольшая группа препаратов, прежде всего вещество, обозначенное WR-2721. Речь шла о производном тиофосфорной кислоты, названном также гаммафосом. Оно относится к большой группе серосодержащих радиопротекторов.
Современные наиболее эффективные радиопротекторы делятся на две основные группы:
а) серосодержащие радиозащитные вещества;
б) производные индолилалкиламинов.
Серосодержащие радиозащитные вещества.
К числу наиболее важных из них с точки зрения возможного практического использования относятся цистеамин, цистамин, аминоэтилизотиуроний, гаммафос, затем цистафос, цитрифос, адетурон и меркаптопропионилглицин (синтезы см. в приложении).
Цистеамин. Это аминоэтиол, b-меркаптоэтиламин, в специальной литературе часто сокращенно обозначаемый МЭА; он имеет химическую формулу:
HS—СН2—СН2—NH2.
Цистеамин представляет собой сильное основание. Его относительная молекулярная масса 77. Он образует соли с неорганическими и органическими кислотами. Температура плавления 96°С, рН водного раствора 8,4. Все соли МЭА, за исключением салицилатов, барбитуратов и фосфатов, гигроскопичны. Из них чаще всего используются гидрохлорид и оксалат. Гидрохлорид цистеамина — белое кристаллическое вещество со специфическим неприятным запахом меркаптана, хорошо растворимое в воде; температура плавления 70—72 °С. Водные растворы дают кислую реакцию, рН 3,5—4,0. Температура плавления сукцината МЭА 146—148 °С, рН водного раствора 7,3.
Аминоалкилтиолы являются сильными восстановителями, они легко окисляются кислородом воздуха и различными слабыми окислителями, в том числе трехвалентным железом, и образуют дисульфиды. Скорость окисления аминоалкилтиолов на воздухе и в водных растворах зависит от рН среды, температуры и присутствия ионов меди и железа. С увеличением рН, температуры и количества ионов в среде скорость окисления возрастает. Сильные окислители могут окислить тиолы до производных сульфиновых или сульфоновых кислот.
Радиозащитное действие цистеамина открыли ученый Бакк и соавторы в 1951 году в Институте фармакологии лютеранского университета в Бельгии.
Цистамин. Он представляет собой меркаптоэтиламин с химической формулой
S— СН2— СН2—NH2.
|
S— СН2— СН2—NH2.
Цистамин — белое кристаллическое вещество, плохо растворимое в воде, но хорошо — в спирте, бензоле и других органических растворителях; относительная молекулярная масса 152. Он обладает свойствами основания, с кислотами образует соли, из которых наиболее часто используется дигидрохлорид цистамина. Это также белое кристаллическое вещество, гигроскопичное, легко растворимое в воде, трудно растворимое в спирте. Водные растворы дигидрохлорида цистамина имеют довольно кислую реакцию, рН около 5,5.
МЭА и цистамин синтезировал ученый Габриель еще в 1889 г. Радиозащитное действие цистамина впервые описали Бакк и соавторы (1951).
Аминоэтилизотиуроний. Это — производное тиомочевины, S-2-аминоэтилизотиомочевина, чаще всего используемая в форме бромида гидробромида. Химическая формула АЭТ
H2N—СН2—СН2—S—C—NH2
||
NH
Его относительная молекулярная масса 119. Бромистая соль АЭТ—белое кристаллическое вещество, гигроскопичное, горькое на вкус, нестабильное на свету, хорошо растворимое в воде, практически нерастворимое в спирте. Водные растворы имеют кислую реакцию. В нейтральном растворе АЭТ превращается в 2-меркаптоэтилгуанидин (МЭГ), нестабильный in vitro и легко окисляющийся до дисульфида.
Данные о радиозащитном действии АЭТ первыми опубликовали американские радиобиологи из Окриджа Догерти и Барнетт в 1955 г. При введении АЭТ в дозах 250 — 450 мг/кг выживали 80% летально облученных мышей (ЛД94). Описание синтеза АЭТ дали в 1957 г. Шапира и соавт. Независимо от этих данных в 1954 г. АЭТ синтезировал советский ученый В. Д. Ляшенко. В опытах Семенова в 1955 г. после введения АЭТ в дозе 150 мг/кг выживали лишь 18% летально облученных мышей, что значительно меньше, чем при применении цистамина. По этой причине данному протектору не придали тогда большого значения.
Гаммафос. Он представляет собой аминоалкилпроизводное тиофосфорной кислоты, точнее S-2-(3-аминопропиламино) этиловый эфир тиофосфорной кислоты. Его химическая формула
O ОН
|| ⁄
H2N—СН2—СН2—СН2—NH—СН2—СН2—S—Р — ОН
Это — белое кристаллическое вещество, довольно хорошо растворимое в воде, с резким чесночным запахом. Температуру плавления определили Свердлов и соавт. (1974) в интервале от 145 до 147 °С.
О синтезе гаммафоса сообщили в 1969 г. Пайпер и соавт. В том же году радиозащитное действие гаммафоса у мышей описали Юхас и Сторер.
Из группы производных тиофосфорной кислоты большое внимание уделяется защитному действию цистафоса (WR-638) S-2-аминоэтилтиофосфорной кислоты.
О
||
H2N— СН2— СН2— S— Р— ОН.
|
ОН
В 1959 г. это вещество синтезировал Акерфилдт. Одновременно было описано его радиозащитное действие. Оно особенно эффективно при нейтронном облучении мышей.
Интересные малотоксичные вещества синтезировали ученый Пантев и соавторы в 1973г. Путем соединения цистеамина с аденозинтрифосфатом (АТФ) было создано эффективное защитное средство цитрифос, а соединением молекул АЭТ и АТФ — радиозащитное вещество адетурон. Последнее эффективно и в случае пролонгированного облучения низкой мощности.
Значительный интерес радиобиологов вызывает 2-меркаптопропионилглицин, сокращенно обозначаемый МПГ. Он представляет собой нетоксичное радиозащитное веществ. Защитная доза МПГ была определена у мышей — 20 мг/кг при внутрибрюшинном введении, тогда как средняя летальная доза препарата достигает 2100 мг/кг. Многие соврменные ученые считают это вещество, наряду с гаммафосом, наиболее перспективным из всех серосодержащих радиопротекторов для клинического применения.
Производные индолилалкиламинов
Основными представителями этой группы химических радиопротекторов являются серотонин и мексамин. Оба вещества — производные триптамина.
Серотонин. В химическом отношении серотонин представляет собой 5-гидрокситриптамин (5-ГТ).
Серотонин обладает амфотерными свойствами. В физиологических условиях ведет себя как основание и только при рН > 10 обнаруживает свойства кислоты. Несвязанный серотонин легко растворяется в воде и с трудом — в органических растворителях. Он легко кристаллизуется до белой кристаллической соли в форме креатининсульфата, относительная молекулярная масса которого составляет 405,37. Из-за значительной нестабильности растворов необходимо постоянно готовить свежие растворы серотонина, предохранять их от света и высокой температуры.
Радиозащитное действие серотонина было описано еще в 1952 г. сотрудниками двух лабораторий независимо друг от друга (Бакк, Герви; Грай и соавторы).
Мексамин. Его химическая формула очень близка к формуле серотонина. Мексамин является 5-метокситриптамином, сокращенно 5-МОТ.
Мексамин легко образует соли. Чаще всего применяется гидрохлорид 5-метокситриптамина. Это белое кристаллическое вещество, хорошо растворимое в воде, с температурой плавления 240—243 °С и относительной молекулярной массой 226,72.
Радиозащитное действие мексамина впервые описали Красных и соавт. (1962).
Главным основанием для разделения химических радиопротекторов кратковременного действия на две группы служит различие в химической структуре веществ; другое важное основание — представление о различных механизмах их действия. Схематично можно представить, что радиозащитное действие серосодержащих веществ реализуется в зависимости от достигнутой концентрации их в клетках радиочувствительных тканей, тогда как производные индолилалкиламинов повышают радиорезистентность тканей и всего организма млекопитающего главным образом благодаря развитию гипоксии вследствие сосудосуживающего фармакологического действия серотонина и мексамина. (Далее об этом будет упомянуто).
Представление о разных механизмах радиозащитного действия двух типов протекторов потребовало подтверждения защитного эффекта комбинаций различных протекторов. Их вводили одновременно в одном растворе (коктейле) либо отдельными порциями одним и тем же или разными способами. Таким образом создалась третья большая группа — комбинации радиопротекторов, также предназначенные для однократной и кратковременной защиты от облучения.
Комбинации радиозащитных веществ
Обычно испытывается радиозащитное действие двухкомпонентных комбинаций, однако не составляют исключения и многокомпонентные рецептуры. Все комбинации испытываются с тем, чтобы свести к приемлемому минимуму дозу отдельных компонентов с целью ослабления их нежелательного побочного действия и достижения наибольшего защитного эффекта.